
buzzard Documentation
Release 0.6.5

Nicolas Goguey, Hervé Nivon

Oct 26, 2020





CONTENTS

1 API 3
1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.4 Env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.5 Misc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2 Caveats, FAQs and design choices 87
2.1 Caveat List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2 FAQs and design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Indices and tables: 91

Index 93

i



ii



buzzard Documentation, Release 0.6.5

In a nutshell, buzzard reads and writes geospatial raster and vector data.

Repository is located here: https://github.com/earthcube-lab/buzzard

CONTENTS 1

https://github.com/earthcube-lab/buzzard


buzzard Documentation, Release 0.6.5

2 CONTENTS



CHAPTER

ONE

API

1.1 Dataset

1.1.1 Dataset

class buzzard.Dataset(sr_work=None, sr_fallback=None, sr_forced=None, anal-
yse_transformation=True, allow_none_geometry=False, al-
low_interpolation=False, max_active=inf, debug_observers=(), **kwargs)

Dataset is a class that stores references to sources. A source is either a raster, or a vector. A Dataset allows:

• quick manipulations by optionally assigning a key to each registered source, (see Sources Registering
below)

• closing all source at once by closing the Dataset object.

But also inter-sources operations, like:

• spatial reference harmonization (see On the fly re-projections in buzzard below),

• workload scheduling on pools when using async rasters (see Scheduler below),

• other features in the future (like data visualization).

For actions specific to opened sources, see those classes:

• GDALFileRaster

• GDALMemRaster

• NumpyRaster

• CachedRasterRecipe

• GDALFileVector

• GDALMemoryVector

Warning: This class is not equivalent to the gdal.Dataset class.

3



buzzard Documentation, Release 0.6.5

Parameters

sr_work: None or string In order to set a spatial reference, use a string that can be converted to WKT by
GDAL.

(see On the fly re-projections in buzzard below)

sr_fallback: None or string In order to set a spatial reference, use a string that can be converted to WKT by
GDAL.

(see On the fly re-projections in buzzard below)

sr_forced: None or string In order to set a spatial reference, use a string that can be converted to WKT by
GDAL.

(see On the fly re-projections in buzzard below)

analyse_transformation: bool Whether or not to perform a basic analysis on two sr to check their compatibil-
ity.

if True: Read the buzz.env.significant variable and raise an exception if a spatial reference conversions is
too lossy in precision.

if False: Skip all checks.

(see On the fly re-projections in buzzard below)

allow_none_geometry: bool Whether or not a vector geometry should raise an exception when encountering
a None geometry

allow_interpolation: bool Whether or not a raster geometry should raise an exception when remapping with
interpolation is necessary.

max_active: nbr >= 1 Maximum number of pooled sources active at the same time. (see Sources activation /
deactivation below)

debug_observers: sequence of object Entry points to observe what is happening in the Dataset’s sheduler.

Examples

>>> import buzzard as buzz

Creating a Dataset.

>>> ds = buzz.Dataset()

Opening a file and registering it under the ‘roofs’ key. There are four ways to the access an opened source.

>>> r = ds.open_vector('roofs', 'path/to/roofs.shp')
... feature_count = len(ds.roofs)
... feature_count = len(ds['roofs'])
... feature_count = len(ds.get('roofs'))
... feature_count = len(r)

Opening a file anonymously. There is only one way to access the source.

>>> r = ds.aopen_raster('path/to/dem.tif')
... data_type = r.dtype

Opening, reading and closing two raster files with context management.

4 Chapter 1. API

https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796


buzzard Documentation, Release 0.6.5

>>> with ds.open_raster('rgb', 'path/to/rgb.tif').close:
... data_type = ds.rgb.fp
... arr = ds.rgb.get_data()

>>> with ds.aopen_raster('path/to/rgb.tif').close as rgb:
... data_type = rgb.dtype
... arr = rgb.get_data()

Creating two files

>>> ds.create_vector('targets', 'path/to/targets.geojson', 'point', driver=
→˓'GeoJSON')
... geometry_type = ds.targets.type

>>> with ds.acreate_raster('/tmp/cache.tif', ds.dem.fp, 'float32', 1).delete as
→˓cache:
... file_footprint = cache.fp
... cache.set_data(dem.get_data())

Sources Types

• Raster sources

– GDAL drivers http://www.gdal.org/formats_list.html (e.g. ‘GTIff’, ‘JPEG’, ‘PNG’, . . . )

– numpy.ndarray

– recipes

• Vector sources

– OGR drivers: https://www.gdal.org/ogr_formats.html (e.g. ‘ESRI Shapefile’, ‘GeoJSON’,
‘DXF’, . . . )

Sources Registering

There are always two ways to create a source, with a key or anonymously.

When creating a source using a key, said key (e.g. the string “my_source_name”) must be provided by user.
Each key identify one source and should thus be unique. There are then three ways to access that source:

• from the object returned by the method that created the source,

• from the Dataset with the attribute syntax: ds.my_source_name,

• from the Dataset with the item syntax: ds[“my_source_name”].

All keys should be unique.

When creating a source anonymously you don’t have to provide a key, but the only way to access this source is
to use the object returned by the method that created the source.

1.1. Dataset 5

http://www.gdal.org/formats_list.html
https://www.gdal.org/ogr_formats.html


buzzard Documentation, Release 0.6.5

Sources activation / deactivation

The sources that inherit from APooledEmissary (like GDALFileVector and GDALFileRaster) are flexible about
their underlying driver object. Those sources may be temporary deactivated (useful to limit the number of file
descriptors active), or activated multiple time at the same time (useful to perfom concurrent reads).

Those sources are automatically activated and deactivated given the current needs and constraints. Setting a
max_active lower than np.inf in the Dataset constructor, will ensure that no more than max_active driver objects
are active at the same time, by deactivating the LRU ones.

On the fly re-projections in buzzard

A Dataset may perform spatial reference conversions on the fly, like a GIS does. Several modes are available, a
set of rules define how each mode work. Those conversions concern both read operations and write operations,
all are performed by the OSR library.

Those conversions are only perfomed on vector’s data/metadata and raster’s Footprints. This implies that classic
raster warping is not included (yet) in those conversions, only raster shifting/scaling/rotation work.

The z coordinates of vectors geometries are also converted, on the other hand elevations are not converted in
DEM rasters.

If analyse_transformation is set to True (default), all coordinates conversions are tested against
buzz.env.significant on file opening to ensure their feasibility or raise an exception otherwise. This system is
naive and very restrictive, use with caution. Although, disabling those tests is not recommended, ignoring float-
ing point precision errors can create unpredictable behaviors at the pixel level deep in your code. Those bugs
can be witnessed when zooming to infinity with tools like qgis or matplotlib.

On the fly re-projections in buzzard - Terminology

sr Spatial reference

sr_work The sr of all interactions with a Dataset (i.e. Footprints, extents, Polygons. . . ), may be None.

sr_stored The sr that can be found in the metadata of a raster/vector storage, may be None.

sr_virtual The sr considered to be written in the metadata of a raster/vector storage, it is often the same as
sr_stored. When a raster/vector is read, a conversion is performed from sr_virtual to sr_work. When
writing vector data, a conversion is performed from sr_work to sr_virtual.

sr_forced A sr_virtual provided by user to ignore all sr_stored. This is for example useful when the sr stored
in the input files are corrupted.

sr_fallback A sr_virtual provided by user to be used when sr_stored is missing. This is for example useful
when an input file can’t store a sr (e.g. DFX).

On the fly re-projections in buzzard - Dataset parameters and modes

mode sr_work sr_fallback sr_forced How is the sr_virtual of a source determined
1 None None None Use sr_stored, no conversion is performed for the lifetime of

this Dataset
2 string None None Use sr_stored, if None raises an exception
3 string string None Use sr_stored, if None it is considered to be sr_fallback
4 string None string Use sr_forced

6 Chapter 1. API



buzzard Documentation, Release 0.6.5

On the fly re-projections in buzzard - Use cases

• If all opened files are known to be written in a same sr in advance, use mode 1. No conversions will
be performed, this is the safest way to work.

• If all opened files are known to be written in the same sr but you wish to work in a different sr, use mode 4.
The huge benefit of this mode is that the driver specific behaviors concerning spatial references have
no impacts on the data you manipulate.

• On the other hand if you don’t have a priori information on files’ sr, mode 2 or mode 3 should be used.

Warning: Side note: Since the GeoJSON driver cannot store a sr, it is impossible to open or
create a GeoJSON file in mode 2.

On the fly re-projections in buzzard - Examples

mode 1 - No conversions at all

>>> ds = buzz.Dataset()

mode 2 - Working with WGS84 coordinates

>>> ds = buzz.Dataset(
... sr_work='WGS84',
... )

mode 3 - Working in UTM with DXF files in WGS84 coordinates

>>> ds = buzz.Dataset(
... sr_work='EPSG:32632',
... sr_fallback='WGS84',
... )

mode 4 - Working in UTM with unreliable LCC input files

>>> ds = buzz.Dataset(
... sr_work='EPSG:32632',
... sr_forced='EPSG:27561',
.. )

Scheduler

To handle async rasters living in a Dataset, a thread is to manage requests made to those rasters. It will start as
soon as you create an async raster and stop when the Dataset is closed or collected. If one of your callbacks to
be called by the scheduler raises an exception, the scheduler will stop and the exception will be propagated to
the main thread as soon as possible.

1.1. Dataset 7



buzzard Documentation, Release 0.6.5

Thread-safety

Thread safety is one of the main concern of buzzard. Everything is thread-safe except:

• The raster write methods

• The vector write methods

• The raster read methods when using the GDAL::MEM driver

• The vector read methods when using the GDAL::Memory driver

__del__()

property close
Close the Dataset with a call or a context management. The close attribute returns an object that can be
both called and used in a with statement

The Dataset can be closed manually or automatically when garbage collected, it is safer to do it manually.

The internal steps are:

• Stopping the scheduler

• Joining the mp.Pool that have been automatically allocated

• Closing all sources

Examples

>>> ds = buzz.Dataset()
... # code...
... ds.close()

>>> with buzz.Dataset().close as ds
... # code...

Caveat

When using a scheduler, some memory leaks may still occur after closing a Dataset. Possible origins:

• https://bugs.python.org/issue34172 (update your python to >=3.6.7)

• Gdal cache not flushed (not a leak)

• The gdal version

• https://stackoverflow.com/a/1316799 (not a leak)

• Some unknown leak in the python threading or multiprocessing standard library

• Some unknown library leaking memory on the C side

• Some unknown library storing data in global variables

You can use a debug_observer with an on_object_allocated method to track large objects allocated in the
scheduler. It will likely not be the source of the problem. If you even find a source of leaks please contact
the buzzard team. https://github.com/earthcube-lab/buzzard/issues

__getitem__(key)
Retrieve a source from its key

8 Chapter 1. API

https://bugs.python.org/issue34172
https://stackoverflow.com/a/1316799
https://github.com/earthcube-lab/buzzard/issues


buzzard Documentation, Release 0.6.5

__contains__(item)
Is key or source registered in Dataset

items()
Generate the pair of (keys_of_source, source) for all proxies

keys()
Generate all source keys

values()
Generate all proxies

__len__()
Retrieve source count registered within this Dataset

property proj4
Dataset’s work spatial reference in WKT proj4. Returns None if mode 1.

property wkt
Dataset’s work spatial reference in WKT format. Returns None if mode 1.

property active_count
Count how many driver objects are currently active

activate_all()
Activate all deactivable proxies. May raise an exception if the number of sources is greater than
max_activated

deactivate_all()
Deactivate all deactivable proxies. Useful to flush all files to disk

property pools
Get the Pool Container.

>>> help(PoolsContainer)

1.1.2 Pool Container

class buzzard.PoolsContainer
Manages thread/process pools and aliases for a Dataset

alias(key, pool_or_none)
Register the given pool under the given key in this Dataset. The key can then be used to refer to that pool
from within the async raster constructors.

Parameters

key: hashable (like a string)

pool_or_none: multiprocessing.pool.Pool or multiprocessing.pool.ThreadPool or None

manage(pool)
Add the given pool to the list of pools that must be terminated upon Dataset closing.

1.1. Dataset 9



buzzard Documentation, Release 0.6.5

Parameters

pool: multiprocessing.pool.Pool or multiprocessing.pool.ThreadPool

__len__()
Number of pools registered in this Dataset

__iter__()
Generator of pools registered in this Dataset

__getitem__(key)
Pool or none getter from alias

__contains__(obj)
Is pool or alias registered in this Dataset

1.1.3 Source Constructors

Rasters Sources Using GDAL

Dataset.open_raster(key, path, driver='GTiff', options=(), mode='r')
Open a raster file within this Dataset under key. Only metadata are kept in memory.

>>> help(GDALFileRaster)

Parameters

key: hashable (like a string) File identifier within Dataset

To avoid using a key, you may use aopen_raster()

path: string

driver: string gdal driver to use when opening the file http://www.gdal.org/formats_list.html

options: sequence of str options for gdal

mode: one of {‘r’, ‘w’}

Returns

source: GDALFileRaster

Example

>>> ds.open_raster('ortho', '/path/to/ortho.tif')
>>> file_proj4 = ds.ortho.proj4_stored

>>> ds.open_raster('dem', '/path/to/dem.tif', mode='w')
>>> nodata_value = ds.dem.nodata

10 Chapter 1. API

http://www.gdal.org/formats_list.html


buzzard Documentation, Release 0.6.5

See Also

• Dataset.aopen_raster(): To skip the key assigment

• buzzard.open_raster(): To skip the key assigment and the explicit Dataset instanciation

Dataset.create_raster(key, path, fp, dtype, channel_count, channels_schema=None, driver='GTiff',
options=(), sr=None, ow=False, **kwargs)

Create a raster file and register it under key within this Dataset. Only metadata are kept in memory.

The raster’s values are initialized with channels_schema[‘nodata’] or 0.

>>> help(GDALFileRaster)
>>> help(GDALMemRaster)

Parameters

key: hashable (like a string) File identifier within Dataset

To avoid using a key, you may use acreate_raster()

path: string Anything that makes sense to GDAL:

• A path to a file

• An empty string when using driver=MEM

• A path or an xml string when using driver=VRT

fp: Footprint Description of the location and size of the raster to create.

dtype: numpy type (or any alias)

channel_count: integer number of channels

channels_schema: dict or None Channel(s) metadata. (see Channels schema fields below)

driver: string gdal driver to use when opening the file http://www.gdal.org/formats_list.html

options: sequence of str options for gdal http://www.gdal.org/frmt_gtiff.html

sr: string or None Spatial reference of the new file.

In order not to set a spatial reference, use None.

In order to set a spatial reference, use a string that can be converted to WKT by GDAL.

ow: bool Overwrite. Whether or not to erase the existing files.

Returns

source: GDALFileRaster or GDALMemRaster The type depends on the driver parameter

1.1. Dataset 11

http://www.gdal.org/formats_list.html
http://www.gdal.org/frmt_gtiff.html
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796


buzzard Documentation, Release 0.6.5

Example

>>> ds.create_raster('dem_copy', 'dem_copy.tif', ds.dem.fp, ds.dsm.dtype, len(ds.
→˓dem))
>>> array = ds.dem.get_data()
>>> ds.dem_copy.set_data(array)

Channel schema fields

Fields: ‘nodata’: None or number ‘interpretation’: None or str ‘offset’: None or number ‘scale’: None or
number ‘mask’: None or str

Interpretation values: undefined, grayindex, paletteindex, redband, greenband, blueband, alphaband, hue-
band, saturationband, lightnessband, cyanband, magentaband, yellowband, blackband

Mask values: all_valid, per_dataset, alpha, nodata

Additionally:

• A field missing or None is kept to default value.

• A field can be passed as

– a value: All bands are set to this value

– a sequence of values of length channel_count: All bands will be set to their respective state

Caveat

When using the GTiff driver, specifying a mask or interpretation field may lead to unexpected results.

See Also

• Dataset.acreate_raster(): To skip the key assigment

• buzzard.create_raster(): To skip the key assigment and the explicit Dataset instanciation

Dataset.aopen_raster(path, driver='GTiff', options=(), mode='r')
Open a raster file anonymously within this Dataset. Only metadata are kept in memory.

See open_raster()

Example

>>> ortho = ds.aopen_raster('/path/to/ortho.tif')
>>> file_wkt = ortho.wkt_stored

12 Chapter 1. API



buzzard Documentation, Release 0.6.5

See Also

• Dataset.open_raster(): To assign a key to this source within the Dataset

• buzzard.open_raster(): To skip the explicit Dataset instanciation

Dataset.acreate_raster(path, fp, dtype, channel_count, channels_schema=None, driver='GTiff', op-
tions=(), sr=None, ow=False, **kwargs)

Create a raster file anonymously within this Dataset. Only metadata are kept in memory.

See create_raster()

Example

>>> mask = ds.acreate_raster('mask.tif', ds.dem.fp, bool, 1, options=['SPARSE_
→˓OK=YES'])
>>> open_options = mask.open_options

>>> channels_schema = {
... 'nodata': -32767,
... 'interpretation': ['blackband', 'cyanband'],
... }
>>> out = ds.acreate_raster('output.tif', ds.dem.fp, 'float32', 2, channels_
→˓schema)
>>> band_interpretation = out.channels_schema['interpretation']

See Also

• Dataset.create_raster(): To assign a key to this source within the Dataset

• buzzard.create_raster(): To skip the explicit Dataset instanciation

Rasters Sources Using NumPy

Dataset.wrap_numpy_raster(key, fp, array, channels_schema=None, sr=None, mode='w', **kwargs)
Register a numpy array as a raster under key within this Dataset.

>>> help(NumpyRaster)

Parameters

key: hashable (like a string) File identifier within Dataset

To avoid using a key, you may use awrap_numpy_raster()

fp: Footprint of shape (Y, X) Description of the location and size of the raster to create.

array: ndarray of shape (Y, X) or (Y, X, C)

channels_schema: dict or None Channel(s) metadata. (see Channels schema fields below)

sr: string or None Spatial reference of the new file

In order not to set a spatial reference, use None.

In order to set a spatial reference, use a string that can be converted to WKT by GDAL.

1.1. Dataset 13

https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796


buzzard Documentation, Release 0.6.5

Returns

source: NumpyRaster

Channel schema fields

Fields: ‘nodata’: None or number ‘interpretation’: None or str ‘offset’: None or number ‘scale’: None or
number ‘mask’: None or str

Interpretation values: undefined, grayindex, paletteindex, redband, greenband, blueband, alphaband, hue-
band, saturationband, lightnessband, cyanband, magentaband, yellowband, blackband

Mask values: all_valid, per_dataset, alpha, nodata

Additionally:

• A field missing or None is kept to default value.

• A field can be passed as

– a value: All bands are set to this value

– a sequence of values of length channel_count: All bands will be set to their respective state

See Also

• Dataset.awrap_numpy_raster(): To skip the key assigment

• buzzard.wrap_numpy_raster(): To skip the key assigment and the explicit Dataset instanciation

Dataset.awrap_numpy_raster(fp, array, channels_schema=None, sr=None, mode='w', **kwargs)
Register a numpy array as a raster anonymously within this Dataset.

See Also

• Dataset.wrap_numpy_raster(): To assign a key to this source within the Dataset

• buzzard.wrap_numpy_raster(): To skip the key assigment and the explicit Dataset instanciation

Rasters Sources Using Recipes

Dataset.create_raster_recipe(key, fp, dtype, channel_count, channels_schema=None,
sr=None, compute_array=None, merge_arrays=<function con-
cat_arrays>, queue_data_per_primitive=mappingproxy({}),
convert_footprint_per_primitive=None, computation_pool='cpu',
merge_pool='cpu', resample_pool='cpu', computation_tiles=None,
max_computation_size=None, max_resampling_size=None, auto-
matic_remapping=True, debug_observers=())

Warning: This method is not yet implemented. It exists for documentation purposes.

Create a raster recipe and register it under key within this Dataset.

14 Chapter 1. API



buzzard Documentation, Release 0.6.5

A raster recipe implements the same interfaces as all other rasters, but internally it computes data on the fly by
calling a callback. The main goal of the raster recipes is to provide a boilerplate-free interface that automatize
those cumbersome tasks:

• tiling,

• parallelism

• caching

• file reads

• resampling

• lazy evaluation

• backpressure prevention and

• optimised task scheduling.

If you are familiar with create_cached_raster_recipe two parameters are new here: automatic_remapping and
max_computation_size.

Parameters

key: see Dataset.create_raster()

fp: see Dataset.create_raster()

dtype: see Dataset.create_raster()

channel_count: see Dataset.create_raster()

channels_schema: see Dataset.create_raster()

sr: see Dataset.create_raster()

compute_array: callable see Computation Function below

merge_arrays: callable see Merge Function below

queue_data_per_primitive: dict of hashable (like a string) to a queue_data method pointer see Primitives
below

convert_footprint_per_primitive: None or dict of hashable (like a string) to a callable see Primitives be-
low

computation_pool: see Pools below

merge_pool: see Pools below

resample_pool: see Pools below

computation_tiles: None or (int, int) or numpy.ndarray of Footprint see Computation Tiling below

max_computation_size: None or int or (int, int) see Computation Tiling below

max_resampling_size: None or int or (int, int) Optionally define a maximum resampling size. If a larger
resampling has to be performed, it will be performed tile by tile in parallel.

automatic_remapping: bool see Automatic Remapping below

debug_observers: sequence of object Entry points that observe what is happening with this raster in the
Dataset’s scheduler.

1.1. Dataset 15



buzzard Documentation, Release 0.6.5

Returns

source: NocacheRasterRecipe

Computation Function

The function that will map a Footprint to a numpy.ndarray. If queue_data_per_primitive is not empty, it will
map a Footprint and primitive arrays to a numpy.ndarray.

It will be called in parallel according to the computation_pool parameter provided at construction.

The function will be called with the following positional parameters:

• fp: Footprint of shape (Y, X) The location at which the pixels should be computed

• primitive_fps: dict of hashable to Footprint For each primitive defined through the
queue_data_per_primitive parameter, the input Footprint.

• primitive_arrays: dict of hashable to numpy.ndarray For each primitive defined through the
queue_data_per_primitive parameter, the input numpy.ndarray that was automatically computed.

• raster: CachedRasterRecipe or None The Raster object of the ongoing computation.

It should return either:

• a single ndarray of shape (Y, X) if only one channel was computed

• a single ndarray of shape (Y, X, C) if one or more channels were computed

If computation_pool points to a process pool, the compute_array function must be picklable and the raster
parameter will be None.

Computation Tiling

You may sometimes want to have control on the Footprints that are requested to the compute_array function,
for example:

• If pixels computed by compute_array are long to compute, you want to tile to increase parallelism.

• If the compute_array function scales badly in term of memory or time, you want to tile to reduce complex-
ity.

• If compute_array can work only on certain Footprints, you want a hard constraint on the set of Footprint
that can be queried from compute_array. (This may happen with convolutional neural networks)

To do so use the computation_tiles or max_computation_size parameter (not both).

If max_computation_size is provided, a Footprint to be computed will be tiled given this parameter.

If computation_tiles is a numpy.ndarray of Footprint, it should be a tiling of the fp parameter. Only the Footprints
contained in this tiling will be asked to the computation_tiles. If computation_tiles is (int, int), a tiling will be
constructed using Footprint.tile using those two ints.

16 Chapter 1. API



buzzard Documentation, Release 0.6.5

Merge Function

The function that will map several pairs of Footprint/numpy.ndarray to a single numpy.ndarray. If the computa-
tion_tiles is None, it will never be called.

It will be called in parallel according to the merge_pool parameter provided at construction.

The function will be called with the following positional parameters:

• fp: Footprint of shape (Y, X) The location at which the pixels should be computed.

• array_per_fp: dict of Footprint to numpy.ndarray The pairs of Footprint/numpy.ndarray of each ar-
rays that were computed by compute_array and that overlap with fp.

• raster: CachedRasterRecipe or None The Raster object of the ongoing computation.

It should return either:

• a single ndarray of shape (Y, X) if only one channel was computed

• a single ndarray of shape (Y, X, C) if one or more channels were computed

If merge_pool points to a process pool, the merge_array function must be picklable and the raster parameter
will be None.

Automatic Remapping

When creating a recipe you give a Footprint through the fp parameter. When calling your compute_array
function the scheduler will only ask for slices of fp. This means that the scheduler takes care of those boilerplate
steps:

• If you request a Footprint on a different grid in a get_data() call, the scheduler takes care of resampling
the outputs of your compute*array function.

• If you request a Footprint partially or fully outside of the raster’s extent, the scheduler will call your
compute_array function to get the interior pixels and then pad the output with nodata.

This system is flexible and can be deactivated by passing automatic_remapping=False to the constructor of a
NocacheRasterRecipe, in this case the scheduler will call your compute_array function for any kind of Footprint;
thus your function must be able to comply with any request.

Primitives

The queue_data_per_primitive and convert_footprint_per_primitive parameters can be used to create depen-
dencies between dependee async rasters and the raster recipe being created. The dependee/dependent relation
is called primitive/derived throughout buzzard. A derived recipe can itself be the primitive of another raster.
Pipelines of any depth and width can be instanciated that way.

In queue_data_per_primitive you declare a dependee by giving it a key of your choice and the pointer to
the queue_data method of dependee raster. You can parameterize the connection by currying the channels,
dst_nodata, interpolation and max_queue_size parameters using functools.partial.

The convert_footprint_per_primitive dict should contain the same keys as queue_data_per_primitive. A value
in the dict should be a function that maps a Footprint to another Footprint. It can be used for example to request
larger rectangles of primitives data to compute a derived array.

e.g. If the primitive raster is an rgb image, and the derived raster only needs the green channel but with a context
of 10 additional pixels on all 4 sides:

1.1. Dataset 17



buzzard Documentation, Release 0.6.5

>>> derived = ds.create_raster_recipe(
... # <other parameters>
... queue_data_per_primitive={'green': functools.partial(primitive.queue_data,
→˓ channels=1)},
... convert_footprint_per_primitive={'green': lambda fp: fp.dilate(10)},
... )

Pools

The *_pool parameters can be used to select where certain computations occur. Those parameters can be of the
following types:

• A multiprocessing.pool.ThreadPool, should be the default choice.

• A multiprocessing.pool.Pool, a process pool. Useful for computations that requires the GIL or that leaks
memory.

• None, to request the scheduler thread to perform the tasks itself. Should be used when the computation is
very light.

• A hashable (like a string), that will map to a pool registered in the Dataset. If that key is missing from
the Dataset, a ThreadPool with multiprocessing.cpu_count() workers will be automatically instanciated.
When the Dataset is closed, the pools instanciated that way will be joined.

See Also

• Dataset.acreate_raster_recipe(): To skip the key assigment

• Dataset.create_raster_recipe(): For results caching

• Dataset.acreate_cached_raster_recipe(): To skip the key assigment

Dataset.create_cached_raster_recipe(key, fp, dtype, channel_count, chan-
nels_schema=None, sr=None, com-
pute_array=None, merge_arrays=<function
concat_arrays>, cache_dir=None, ow=False,
queue_data_per_primitive=mappingproxy({}), con-
vert_footprint_per_primitive=None, computa-
tion_pool='cpu', merge_pool='cpu', io_pool='io',
resample_pool='cpu', cache_tiles=(512, 512), com-
putation_tiles=None, max_resampling_size=None,
debug_observers=())

Create a cached raster recipe and register it under key within this Dataset.

Compared to a NocacheRasterRecipe, in a CachedRasterRecipe the pixels are never computed twice. Cache files
are used to store and reuse pixels from computations. The cache can even be reused between python sessions.

If you are familiar with create_raster_recipe four parameters are new here: io_pool, cache_tiles, cache_dir and
ow. They are all related to file system operations.

See create_raster_recipe method, since it shares most of the features:

>>> help(CachedRasterRecipe)

18 Chapter 1. API



buzzard Documentation, Release 0.6.5

Parameters

key: see Dataset.create_raster() method

fp: see Dataset.create_raster() method

dtype: see Dataset.create_raster() method

channel_count: see Dataset.create_raster() method

channels_schema: see Dataset.create_raster() method

sr: see Dataset.create_raster() method

compute_array: see Dataset.create_raster_recipe() method

merge_arrays: see Dataset.create_raster_recipe() method

cache_dir: str or pathlib.Path Path to the directory that holds the cache files associated with this raster. If
cache files are present, they will be reused (or erased if corrupted). If a cache file is needed and missing, it
will be computed.

ow: bool Overwrite. Whether or not to erase the old cache files contained in cache_dir.

Warning: not only the tiles needed (hence computed) but all buzzard cache files in cache_dir will be
deleted.

queue_data_per_primitive: see Dataset.create_raster_recipe() method

convert_footprint_per_primitive: see Dataset.create_raster_recipe() method

computation_pool: see Dataset.create_raster_recipe() method

merge_pool: see Dataset.create_raster_recipe() method

io_pool: see Dataset.create_raster_recipe() method

resample_pool: see Dataset.create_raster_recipe() method

cache_tiles: (int, int) or numpy.ndarray of Footprint A tiling of the fp parameter. Each tile will correspond
to one cache file. if (int, int): Construct the tiling by calling Footprint.tile with this parameter

computation_tiles: if None: Use the same tiling as cache_tiles else: see create_raster_recipe method

max_resampling_size: None or int or (int, int) see Dataset.create_raster_recipe() method

debug_observers: sequence of object see Dataset.create_raster_recipe() method

Returns

source: CachedRasterRecipe

1.1. Dataset 19



buzzard Documentation, Release 0.6.5

See Also

• Dataset.create_raster_recipe(): To skip the caching

• Dataset.acreate_cached_raster_recipe(): To skip the key assigment

Dataset.acreate_cached_raster_recipe(fp, dtype, channel_count, chan-
nels_schema=None, sr=None, com-
pute_array=None, merge_arrays=<function
concat_arrays>, cache_dir=None, ow=False,
queue_data_per_primitive=mappingproxy({}),
convert_footprint_per_primitive=None, computa-
tion_pool='cpu', merge_pool='cpu', io_pool='io',
resample_pool='cpu', cache_tiles=(512, 512), com-
putation_tiles=None, max_resampling_size=None,
debug_observers=())

Create a cached raster reciped anonymously within this Dataset.

See Dataset.create_cached_raster_recipe

See Also

• Dataset.create_raster_recipe(): To skip the caching

• Dataset.create_cached_raster_recipe(): To assign a key to this source within the Dataset

Vectors Sources Using GDAL (OGR)

Dataset.open_vector(key, path, layer=None, driver='ESRI Shapefile', options=(), mode='r')
Open a vector file within this Dataset under key. Only metadata are kept in memory.

>>> help(GDALFileVector)

Parameters

key: hashable (like a string) File identifier within Dataset

To avoid using a key, you may use aopen_vector()

path: string

layer: None or int or string

driver: string ogr driver to use when opening the file http://www.gdal.org/ogr_formats.html

options: sequence of str options for ogr

mode: one of {‘r’, ‘w’}

20 Chapter 1. API

http://www.gdal.org/ogr_formats.html


buzzard Documentation, Release 0.6.5

Returns

source: GDALFileVector

Example

>>> ds.open_vector('trees', '/path/to.shp')
>>> feature_count = len(ds.trees)

>>> ds.open_vector('roofs', '/path/to.json', driver='GeoJSON', mode='w')
>>> fields_list = ds.roofs.fields

See Also

• Dataset.aopen_vector(): To skip the key assigment

• buzzard.open_vector(): To skip the key assigment and the explicit Dataset instanciation

Dataset.aopen_vector(path, layer=None, driver='ESRI Shapefile', options=(), mode='r')
Open a vector file anonymously within this Dataset. Only metadata are kept in memory.

See open_vector()

Example

>>> trees = ds.aopen_vector('/path/to.shp')
>>> features_bounds = trees.bounds

See Also

• Dataset.open_vector(): To assign a key to this source within the Dataset

• buzzard.open_vector(): To skip the key assigment and the explicit Dataset instanciation

Dataset.create_vector(key, path, type, fields=(), layer=None, driver='ESRI Shapefile', options=(),
sr=None, ow=False)

Create an empty vector file and register it under key within this Dataset. Only metadata are kept in memory.

>>> help(GDALFileVector)
>>> help(GDALMemoryVector)

Parameters

key: hashable (like a string) File identifier within Dataset

To avoid using a key, you may use acreate_vector()

path: string Anything that makes sense to GDAL:

• A path to a file

• An empty string when using driver=Memory

1.1. Dataset 21



buzzard Documentation, Release 0.6.5

type: string name of a wkb geometry type, without the wkb prefix.

list: http://www.gdal.org/ogr__core_8h.html#a800236a0d460ef66e687b7b65610f12a

fields: sequence of dict Attributes of fields, one dict per field. (see Field Attributes below)

layer: None or string

driver: string ogr driver to use when opening the file http://www.gdal.org/ogr_formats.html

options: sequence of str options for ogr

sr: string or None Spatial reference of the new file

In order not to set a spatial reference, use None.

In order to set a spatial reference, use a string that can be converted to WKT by GDAL.

ow: bool Overwrite. Whether or not to erase the existing files.

Returns

source: GDALFileVector or GDALMemoryVector The type depends on the driver parameter

Example

>>> ds.create_vector('lines', '/path/to.shp', 'linestring')
>>> geometry_type = ds.lines.type
>>> ds.lines.insert_data([[0, 0], [1, 1], [1, 2]])

>>> fields = [
{'name': 'name', 'type': str},
{'name': 'count', 'type': 'int32'},
{'name': 'area', 'type': np.float64, 'width': 5, precision: 18},
{'name': 'when', 'type': np.datetime64},

]
>>> ds.create_vector('zones', '/path/to.shp', 'polygon', fields)
>>> field0_type = ds.zones.fields[0]['type']
>>> ds.zones.insert_data(shapely.geometry.box(10, 10, 15, 15))

Field Attributes

Attributes:

• “name”: string

• “type”: string (see Field Types below)

• “precision”: int

• “width”: int

• “nullable”: bool

• “default”: same as type

An attribute missing or None is kept to default value.

22 Chapter 1. API

http://www.gdal.org/ogr__core_8h.html#a800236a0d460ef66e687b7b65610f12a
http://www.gdal.org/ogr_formats.html
https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796


buzzard Documentation, Release 0.6.5

Field Types

Type Type names
Binary “binary”, bytes, np.bytes_, aliases of np.bytes_
Date “date”
DateTime “datetime”, datetime.datetime, np.datetime64, aliases of np.datetime64
Time “time”
Integer “integer” np.int32, aliases of np.int32
Integer64 “integer64”, int, np.int64, aliases of np.int64
Real “real”, float, np.float64, aliases of np.float64
String “string”, str, np.str_, aliases of np.str_
Integer64List “integer64list”, “int list”
IntegerList “integerlist”
RealList “reallist”, “float list”

See Also

• Dataset.acreate_vector(): To skip the key assigment

• buzzard.create_vector(): To skip the key assigment and the explicit Dataset instanciation

Dataset.acreate_vector(path, type, fields=(), layer=None, driver='ESRI Shapefile', options=(),
sr=None, ow=False)

Create a vector file anonymously within this Dataset. Only metadata are kept in memory.

See create_vector()

Example

>>> lines = ds.acreate_vector('/path/to.shp', 'linestring')
>>> file_proj4 = lines.proj4_stored

See Also

• Dataset.create_vector(): To assign a key to this source within the Dataset

• buzzard.create_vector(): To skip the key assigment and the explicit Dataset instanciation

1.2 Sources

All sources in buzzard can only be constructed from the Dataset methods, see Source Constructors

All sources in buzzard inherit from a series of abstract classes:

1.2. Sources 23



buzzard Documentation, Release 0.6.5

1.2.1 GDALFileRaster

class buzzard.ASource(<implementation detail>)
Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

• Has a stored spatial reference

• Has a virtual spatial reference that is influenced by the Dataset’s opening mode

• Can be closed

property wkt_stored
The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

property proj4_stored
The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

property wkt_virtual
The spatial reference considered to be written in the metadata of a source, in wkt format.

string or None

property proj4_virtual
The spatial reference considered to be written in the metadata of a source, in proj4 format.

string or None

get_keys()
Get the list of keys under which this source is registered to in the Dataset

24 Chapter 1. API

https://user-images.githubusercontent.com/9285880/48417679-a157fc80-e753-11e8-8e3b-50fcc0d87218.png


buzzard Documentation, Release 0.6.5

property close
Close a source with a call or a context management. The close attribute returns an object that can be both
called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:

# code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:

# code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:

# code...

__del__()

class buzzard.ASourceRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters.

Features Defined

• Has a stored Footprint that defines the location of the raster

• Has a Footprint that is influenced by the Dataset’s opening mode

• Has a length that defines how many channels are available

• Has a channels_schema that defines per channel attributes (e.g. nodata)

• Has a dtype (like np.float32)

• Has a get_data method that allows to read pixels in their current state to numpy arrays

property fp_stored

property fp

property channels_schema

property dtype

property nodata
Accessor for first channel’s nodata value

get_nodata(channel=0)
Accessor for nodata value

__len__()
Return the number of channels

get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)
Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When remapping, the nodata
values are not interpolated, they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

1.2. Sources 25



buzzard Documentation, Release 0.6.5

Warning: The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning: Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

Parameters

fp: Footprint of shape (Y, X) or None If None: return the full source raster

If Footprint: return this window from the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
read

dst_nodata: nbr or None nodata value in output array If None and raster.nodata is not None:
raster.nodata is used If None and raster.nodata is None: 0 is used

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

Returns

array: numpy.ndarray of shape (Y, X) or (Y, X, C)

• If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) other-
wise.

• If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

• If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C),
no matter the size of C.

(see Channels Parameter below)

Channels Parameter

type value meaning output shape
NoneType None (default) All channels (Y, X) or (Y, X, C)
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels (Y, X, C)
int 0, 1, 2, -1, -2, -3 Channel idx (Y, X)
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels (Y, X, C)

class buzzard.AStored(<implementation detail>)
Base abstract class defining the common behavior of all sources that are stored somewhere (like RAM or disk).

26 Chapter 1. API



buzzard Documentation, Release 0.6.5

Features Defined

• Has an opening mode

property mode
Open mode, one of {‘r’, ‘w’}

class buzzard.AStoredRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that are stored somewhere (like RAM or disk).

Features Defined

• Has a set_data method that allows to write pixels to storage

set_data(array, fp=None, channels=None, interpolation='cv_area', mask=None, **kwargs)
Write a rectangle of data to the destination raster. Each channel in array is written to one channel in raster
in the same order as described by the channels parameter. An optional mask may be provided to only write
certain pixels of array.

If fp is not fully within the destination raster, only the overlapping pixels are written. If fp is not on the same
grid as the destination raster, remapping is automatically performed using the interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When interpolating:

• The nodata values are not interpolated, they are correctly spread to the output.

• At most one pixel may be lost at edges due to interpolation. Provide more context in array to com-
pensate this loss.

• The mask parameter is also interpolated.

The alpha bands are currently resampled like any other band, this behavior may change in the future.

This method is not thread-safe.

Parameters

array: numpy.ndarray of shape (Y, X) or (Y, X, C) The values to be written

fp: Footprint of shape (Y, X) or None If None: write the full source raster If Footprint: write this win-
dow to the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
written.

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

mask: numpy array of shape (Y, X) and dtype bool OR inputs accepted by Footprint.burn_polygons

1.2. Sources 27



buzzard Documentation, Release 0.6.5

Channels Parameter

type value meaning
NoneType None (default) All channels
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels
int 0, 1, 2, -1, -2, -3 Channel idx
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Raster.

fill(value, channels=None, **kwargs)
Fill raster with value.

This method is not thread-safe.

Parameters

value: nbr

channels: int or sequence of int (see Channels Parameter below) The channels to be written

Channels Parameter

type value meaning
NoneType None (default) All channels
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels
int 0, 1, 2, -1, -2, -3 Channel idx
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Raster.

class buzzard.AEmissary(<implementation detail>)
Base abstract class defining the common behavior of all sources that are backed by a driver.

28 Chapter 1. API



buzzard Documentation, Release 0.6.5

Features Defined

• Has a driver (like “GTiff” for GDAL’s geotiff driver)

• Has open_options

• Has a path (if the driver supports it)

• Can be deleted (if the driver supports it)

property driver
Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

property open_options
Get the list of options used for opening

property path
Get the file system path of this source, may be the empty string if not applicable

property delete
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

property remove
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

class buzzard.AEmissaryRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that are backed by a driver.

1.2. Sources 29



buzzard Documentation, Release 0.6.5

Features Defined

None

class buzzard.APooledEmissary(<implementation detail>)
Base abstract class defining the common behavior of all sources that can deactivate and reactivate their underly-
ing driver at will.

This is useful to balance the number of active file descriptors. This is useful to perform concurrent reads if the
driver does no support it.

Features Defined

• An activate method to manually open the driver (Mostly useless feature since opening is automatic if
necessary)

• A deactivate method to close the driver (Useful to flush data to disk)

• An active_count property

• An active property

activate()
Make sure that at least one driver object is active for this Raster/Vector

deactivate()
Collect all active driver object for this Raster/Vector. If a driver object is currently being used, will raise
an exception.

property active_count
Count how many driver objects are currently active for this Raster/Vector

property active
Is there any driver object currently active for this Raster/Vector

class buzzard.APooledEmissaryRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that can deactivate and reactivate their underlying
driver at will.

Features Defined

None

class buzzard.GDALFileRaster(<implementation detail>)
Concrete class defining the behavior of a GDAL raster using a file.

>>> help(Dataset.open_raster)
>>> help(Dataset.create_raster)

30 Chapter 1. API



buzzard Documentation, Release 0.6.5

Features Defined

None

1.2.2 GDALMemRaster

class buzzard.ASource(<implementation detail>)
Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

• Has a stored spatial reference

• Has a virtual spatial reference that is influenced by the Dataset’s opening mode

• Can be closed

property wkt_stored
The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

property proj4_stored
The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

property wkt_virtual
The spatial reference considered to be written in the metadata of a source, in wkt format.

string or None

property proj4_virtual
The spatial reference considered to be written in the metadata of a source, in proj4 format.

string or None

get_keys()
Get the list of keys under which this source is registered to in the Dataset

property close
Close a source with a call or a context management. The close attribute returns an object that can be both
called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:

# code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:

# code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:

# code...

__del__()

class buzzard.ASourceRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters.

1.2. Sources 31



buzzard Documentation, Release 0.6.5

Features Defined

• Has a stored Footprint that defines the location of the raster

• Has a Footprint that is influenced by the Dataset’s opening mode

• Has a length that defines how many channels are available

• Has a channels_schema that defines per channel attributes (e.g. nodata)

• Has a dtype (like np.float32)

• Has a get_data method that allows to read pixels in their current state to numpy arrays

property fp_stored

property fp

property channels_schema

property dtype

property nodata
Accessor for first channel’s nodata value

get_nodata(channel=0)
Accessor for nodata value

__len__()
Return the number of channels

get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)
Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When remapping, the nodata
values are not interpolated, they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning: The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning: Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

32 Chapter 1. API



buzzard Documentation, Release 0.6.5

Parameters

fp: Footprint of shape (Y, X) or None If None: return the full source raster

If Footprint: return this window from the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
read

dst_nodata: nbr or None nodata value in output array If None and raster.nodata is not None:
raster.nodata is used If None and raster.nodata is None: 0 is used

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

Returns

array: numpy.ndarray of shape (Y, X) or (Y, X, C)

• If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) other-
wise.

• If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

• If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C),
no matter the size of C.

(see Channels Parameter below)

Channels Parameter

type value meaning output shape
NoneType None (default) All channels (Y, X) or (Y, X, C)
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels (Y, X, C)
int 0, 1, 2, -1, -2, -3 Channel idx (Y, X)
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels (Y, X, C)

class buzzard.AStored(<implementation detail>)
Base abstract class defining the common behavior of all sources that are stored somewhere (like RAM or disk).

Features Defined

• Has an opening mode

property mode
Open mode, one of {‘r’, ‘w’}

class buzzard.AStoredRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that are stored somewhere (like RAM or disk).

1.2. Sources 33



buzzard Documentation, Release 0.6.5

Features Defined

• Has a set_data method that allows to write pixels to storage

set_data(array, fp=None, channels=None, interpolation='cv_area', mask=None, **kwargs)
Write a rectangle of data to the destination raster. Each channel in array is written to one channel in raster
in the same order as described by the channels parameter. An optional mask may be provided to only write
certain pixels of array.

If fp is not fully within the destination raster, only the overlapping pixels are written. If fp is not on the same
grid as the destination raster, remapping is automatically performed using the interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When interpolating:

• The nodata values are not interpolated, they are correctly spread to the output.

• At most one pixel may be lost at edges due to interpolation. Provide more context in array to com-
pensate this loss.

• The mask parameter is also interpolated.

The alpha bands are currently resampled like any other band, this behavior may change in the future.

This method is not thread-safe.

Parameters

array: numpy.ndarray of shape (Y, X) or (Y, X, C) The values to be written

fp: Footprint of shape (Y, X) or None If None: write the full source raster If Footprint: write this win-
dow to the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
written.

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

mask: numpy array of shape (Y, X) and dtype bool OR inputs accepted by Footprint.burn_polygons

Channels Parameter

type value meaning
NoneType None (default) All channels
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels
int 0, 1, 2, -1, -2, -3 Channel idx
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels

34 Chapter 1. API



buzzard Documentation, Release 0.6.5

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Raster.

fill(value, channels=None, **kwargs)
Fill raster with value.

This method is not thread-safe.

Parameters

value: nbr

channels: int or sequence of int (see Channels Parameter below) The channels to be written

Channels Parameter

type value meaning
NoneType None (default) All channels
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels
int 0, 1, 2, -1, -2, -3 Channel idx
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Raster.

class buzzard.AEmissary(<implementation detail>)
Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

• Has a driver (like “GTiff” for GDAL’s geotiff driver)

• Has open_options

• Has a path (if the driver supports it)

• Can be deleted (if the driver supports it)

property driver
Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

property open_options
Get the list of options used for opening

property path
Get the file system path of this source, may be the empty string if not applicable

property delete
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

1.2. Sources 35



buzzard Documentation, Release 0.6.5

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

property remove
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

class buzzard.AEmissaryRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that are backed by a driver.

Features Defined

None

class buzzard.GDALMemRaster(<implementation detail>)
Concrete class defining the behavior of a GDAL raster using the “MEM” driver.

>>> help(Dataset.create_raster)

Features Defined

None

1.2.3 NumpyRaster

class buzzard.ASource(<implementation detail>)
Base abstract class defining the common behavior of all sources opened in the Dataset.

36 Chapter 1. API



buzzard Documentation, Release 0.6.5

Features Defined

• Has a stored spatial reference

• Has a virtual spatial reference that is influenced by the Dataset’s opening mode

• Can be closed

property wkt_stored
The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

property proj4_stored
The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

property wkt_virtual
The spatial reference considered to be written in the metadata of a source, in wkt format.

string or None

property proj4_virtual
The spatial reference considered to be written in the metadata of a source, in proj4 format.

string or None

get_keys()
Get the list of keys under which this source is registered to in the Dataset

property close
Close a source with a call or a context management. The close attribute returns an object that can be both
called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:

# code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:

# code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:

# code...

__del__()

class buzzard.ASourceRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters.

1.2. Sources 37



buzzard Documentation, Release 0.6.5

Features Defined

• Has a stored Footprint that defines the location of the raster

• Has a Footprint that is influenced by the Dataset’s opening mode

• Has a length that defines how many channels are available

• Has a channels_schema that defines per channel attributes (e.g. nodata)

• Has a dtype (like np.float32)

• Has a get_data method that allows to read pixels in their current state to numpy arrays

property fp_stored

property fp

property channels_schema

property dtype

property nodata
Accessor for first channel’s nodata value

get_nodata(channel=0)
Accessor for nodata value

__len__()
Return the number of channels

get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)
Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When remapping, the nodata
values are not interpolated, they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning: The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning: Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

38 Chapter 1. API



buzzard Documentation, Release 0.6.5

Parameters

fp: Footprint of shape (Y, X) or None If None: return the full source raster

If Footprint: return this window from the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
read

dst_nodata: nbr or None nodata value in output array If None and raster.nodata is not None:
raster.nodata is used If None and raster.nodata is None: 0 is used

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

Returns

array: numpy.ndarray of shape (Y, X) or (Y, X, C)

• If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) other-
wise.

• If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

• If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C),
no matter the size of C.

(see Channels Parameter below)

Channels Parameter

type value meaning output shape
NoneType None (default) All channels (Y, X) or (Y, X, C)
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels (Y, X, C)
int 0, 1, 2, -1, -2, -3 Channel idx (Y, X)
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels (Y, X, C)

class buzzard.AStored(<implementation detail>)
Base abstract class defining the common behavior of all sources that are stored somewhere (like RAM or disk).

Features Defined

• Has an opening mode

property mode
Open mode, one of {‘r’, ‘w’}

class buzzard.AStoredRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that are stored somewhere (like RAM or disk).

1.2. Sources 39



buzzard Documentation, Release 0.6.5

Features Defined

• Has a set_data method that allows to write pixels to storage

set_data(array, fp=None, channels=None, interpolation='cv_area', mask=None, **kwargs)
Write a rectangle of data to the destination raster. Each channel in array is written to one channel in raster
in the same order as described by the channels parameter. An optional mask may be provided to only write
certain pixels of array.

If fp is not fully within the destination raster, only the overlapping pixels are written. If fp is not on the same
grid as the destination raster, remapping is automatically performed using the interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When interpolating:

• The nodata values are not interpolated, they are correctly spread to the output.

• At most one pixel may be lost at edges due to interpolation. Provide more context in array to com-
pensate this loss.

• The mask parameter is also interpolated.

The alpha bands are currently resampled like any other band, this behavior may change in the future.

This method is not thread-safe.

Parameters

array: numpy.ndarray of shape (Y, X) or (Y, X, C) The values to be written

fp: Footprint of shape (Y, X) or None If None: write the full source raster If Footprint: write this win-
dow to the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
written.

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

mask: numpy array of shape (Y, X) and dtype bool OR inputs accepted by Footprint.burn_polygons

Channels Parameter

type value meaning
NoneType None (default) All channels
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels
int 0, 1, 2, -1, -2, -3 Channel idx
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels

40 Chapter 1. API



buzzard Documentation, Release 0.6.5

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Raster.

fill(value, channels=None, **kwargs)
Fill raster with value.

This method is not thread-safe.

Parameters

value: nbr

channels: int or sequence of int (see Channels Parameter below) The channels to be written

Channels Parameter

type value meaning
NoneType None (default) All channels
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels
int 0, 1, 2, -1, -2, -3 Channel idx
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Raster.

class buzzard.NumpyRaster(<implementation detail>)
Concrete class defining the behavior of a wrapped numpy array

>>> help(Dataset.wrap_numpy_raster)

Features Defined

• Has an array property that points to the numpy array provided at construction.

property array
Returns the Raster’s full input data as a Numpy array

1.2. Sources 41



buzzard Documentation, Release 0.6.5

1.2.4 CachedRasterRecipe

class buzzard.ASource(<implementation detail>)
Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

• Has a stored spatial reference

• Has a virtual spatial reference that is influenced by the Dataset’s opening mode

• Can be closed

property wkt_stored
The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

property proj4_stored
The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

property wkt_virtual
The spatial reference considered to be written in the metadata of a source, in wkt format.

string or None

property proj4_virtual
The spatial reference considered to be written in the metadata of a source, in proj4 format.

string or None

get_keys()
Get the list of keys under which this source is registered to in the Dataset

property close
Close a source with a call or a context management. The close attribute returns an object that can be both
called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:

# code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:

# code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:

# code...

__del__()

class buzzard.ASourceRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters.

42 Chapter 1. API



buzzard Documentation, Release 0.6.5

Features Defined

• Has a stored Footprint that defines the location of the raster

• Has a Footprint that is influenced by the Dataset’s opening mode

• Has a length that defines how many channels are available

• Has a channels_schema that defines per channel attributes (e.g. nodata)

• Has a dtype (like np.float32)

• Has a get_data method that allows to read pixels in their current state to numpy arrays

property fp_stored

property fp

property channels_schema

property dtype

property nodata
Accessor for first channel’s nodata value

get_nodata(channel=0)
Accessor for nodata value

__len__()
Return the number of channels

get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)
Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using interpolation algorithm. (It
fails if the allow_interpolation parameter is set to False in Dataset (default)). When remapping, the nodata
values are not interpolated, they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning: The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning: Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

1.2. Sources 43



buzzard Documentation, Release 0.6.5

Parameters

fp: Footprint of shape (Y, X) or None If None: return the full source raster

If Footprint: return this window from the raster

channels: None or int or slice or sequence of int (see Channels Parameter below) The channels to be
read

dst_nodata: nbr or None nodata value in output array If None and raster.nodata is not None:
raster.nodata is used If None and raster.nodata is None: 0 is used

interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
OpenCV method used if intepolation is necessary

Returns

array: numpy.ndarray of shape (Y, X) or (Y, X, C)

• If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) other-
wise.

• If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

• If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C),
no matter the size of C.

(see Channels Parameter below)

Channels Parameter

type value meaning output shape
NoneType None (default) All channels (Y, X) or (Y, X, C)
slice slice(None), slice(1), slice(0, 2), slice(2, 0, -1) Those channels (Y, X, C)
int 0, 1, 2, -1, -2, -3 Channel idx (Y, X)
(int, . . . ) [0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1] Those channels (Y, X, C)

class buzzard.AAsyncRaster(<implementation detail>)
Base abstract class defining the common behavior of all rasters that are managed by the Dataset’s scheduler.

Features Defined

• Has a queue_data, a low level method that can be used to query several arrays at once.

• Has an iter_data, a higher level wrapper of queue_data.

queue_data(fps, channels=None, dst_nodata=None, interpolation='cv_area', max_queue_size=5,
**kwargs)

Read several rectangles of data on several channels from the source raster.

Using queue_data instead of multiple calls to get_data allows more parallelism. The fps parameter should
contain a sequence of Footprint that will be mapped to numpy.ndarray. The first ones will be computed
with a higher priority than the later ones.

Calling this method sends an asynchronous message to the Dataset’s scheduler with the input parameters
and a queue. On the input side of the queue, the scheduler will call the put method with each array

44 Chapter 1. API



buzzard Documentation, Release 0.6.5

requested. On the output side of the queue, the get method should be called to retrieve the requested
arrays.

The output queue will be created with a max queue size of max_queue_size, the scheduler will be careful
to prepare only the arrays that can fit in the output queue. Thanks to this feature: backpressure can be
entirely avoided.

If you wish to cancel your request, loose the reference to the queue and the scheduler will gracefuly cancel
the query.

In general you should use the iter_data method instead of the queue_data one, it is much safer to use.
However you will need to pass the queue_data method of a raster, to create another raster (a recipe) that
depends on the first raster.

see rasters’ get_data documentation, it shares most of the concepts

Parameters

fps: sequence of Footprint The Footprints at which the raster should be sampled.

channels: see get_data method

dst_nodata: see get_data method

interpolation: see get_data method

max_queue_size: int Maximum number of arrays to prepare in advance in the underlying queue.

Returns

queue: queue.Queue of ndarray The arrays are put into the queue in the same order as in the fps param-
eter.

iter_data(fps, channels=None, dst_nodata=None, interpolation='cv_area', max_queue_size=5,
**kwargs)

Read several rectangles of data on several channels from the source raster.

The iter_data method is a higher level wrapper around the queue_data method. It returns a python gener-
ator and while waiting for data, it periodically probes the Dataset’s scheduler to reraise an exception if it
crashed.

If you wish to cancel your request, loose the reference to the iterable and the scheduler will gracefully
cancel the query.

see rasters’ get_data documentation, it shares most of the concepts see queue_data documentation, it is
called from within the iter_data method

Parameters

fps: sequence of Footprint The Footprints at which the raster should be sampled.

channels: see get_data method

dst_nodata: see get_data method

interpolation: see get_data method

max_queue_size: int Maximum number of arrays to prepare in advance in the underlying queue.

1.2. Sources 45



buzzard Documentation, Release 0.6.5

Returns

iterable: iterable of ndarray The arrays are yielded into the generator in the same order as in the fps
parameter.

class buzzard.ARasterRecipe(<implementation detail>)
Base abstract class defining the common behavior of all rasters that compute data on the fly through the Dataset’s
scheduler.

Features Defined

• Has a primitives property, a dict that lists the primitive rasters declared at construction.

property primitives
dict of primitive name to Source, deduced from the queue_data_per_primitive provided at construction.

class buzzard.CachedRasterRecipe(<implementation detail>)
Concrete class defining the behavior of a raster computed on the fly and fills a cache to avoid subsequent
computations.

>>> help(Dataset.create_cached_raster_recipe)

property cache_tiles
Cache tiles provided or created at construction

property cache_dir
Cache directory path provided at construction

1.2.5 GDALFileVector

class buzzard.ASource(<implementation detail>)
Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

• Has a stored spatial reference

• Has a virtual spatial reference that is influenced by the Dataset’s opening mode

• Can be closed

property wkt_stored
The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

property proj4_stored
The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

property wkt_virtual
The spatial reference considered to be written in the metadata of a source, in wkt format.

string or None

46 Chapter 1. API



buzzard Documentation, Release 0.6.5

property proj4_virtual
The spatial reference considered to be written in the metadata of a source, in proj4 format.

string or None

get_keys()
Get the list of keys under which this source is registered to in the Dataset

property close
Close a source with a call or a context management. The close attribute returns an object that can be both
called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:

# code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:

# code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:

# code...

__del__()

class buzzard.ASourceVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors.

Features Defined

• Has a type that defines the type of geometry (like “Polygon”)

• Has fields that define the type of informations that is paired with each geometries

• Has a stored extent that allows to retrieve the current extent of all the geometries

• Has a length that indicates how many geometries this source contains.

• Has several read functions (like iter_data) to retrieve geometries in their current state to shapely objects

property type
Geometry type

property fields
Fields definition

property extent
Get the vector’s extent in work spatial reference. (x then y)

1.2. Sources 47



buzzard Documentation, Release 0.6.5

Example

>>> minx, maxx, miny, maxy = ds.roofs.extent

property extent_stored
Get the vector’s extent in stored spatial reference. (minx, miny, maxx, maxy)

property bounds
Get the vector’s bounds in work spatial reference. (min then max)

Example

>>> minx, miny, maxx, maxy = ds.roofs.extent

property bounds_stored
Get the vector’s bounds in stored spatial reference. (min then max)

__len__()
Return the number of features in vector

iter_data(fields=None, geom_type='shapely', mask=None, clip=False, slicing=slice(0, None, 1))
Create an iterator over vector’s features

Parameters

fields: None or string or -1 or sequence of string/int Which fields to include in iteration

• if None, empty sequence or empty string: No fields included

• if -1: All fields included

• if string: Name of fields to include (separated by comma or space)

• if sequence: List of indices / names to include

geom_type: {‘shapely’, ‘coordinates’} Returned geometry type

mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr) Add a spatial filter to iteration,
only geometries not disjoint with mask will be included.

• if None: No spatial filter

• if Footprint or shapely polygon: Polygon

• if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

clip: bool Returns intersection of geometries and mask. Caveat: A clipped geometry might not be of the
same type as the original geometry. e.g: polygon might be clipped to might be converted to one of
those:

• polygon

• line

• point

• multipolygon

• multiline

• multipoint

48 Chapter 1. API



buzzard Documentation, Release 0.6.5

• geometrycollection

slicing: slice Slice of the iteration to return. It is applied after spatial filtering

Yields

feature: geometry or (geometry,) or (geometry, *fields)

• If geom_type is ‘shapely’: geometry is a shapely geometry.

• If geom_type is coordinates: geometry is a nested lists of numpy arrays.

• If fields is not a sequence: feature is geometry or (geometry, *fields), depending on the number of
fields to yield.

• If fields is a sequence or a string: feature is (geometry,) or (geometry, *fields). Use fields=[-1] to
get a monad containing all fields.

Examples

>>> for polygon, volume, stock_type in ds.stocks.iter_data('volume,type'):
print('area:{}m**2, volume:{}m**3'.format(polygon.area, volume))

>>> for polygon, in ds.stocks.iter_data([]):
print('area:{}m**2'.format(polygon.area))

>>> for polygon in ds.stocks.iter_data():
print('area:{}m**2'.format(polygon.area))

get_data(index, fields=- 1, geom_type='shapely', mask=None, clip=False)
Fetch a single feature in vector. See ASourceVector.iter_data

iter_geojson(mask=None, clip=False, slicing=slice(0, None, 1))
Create an iterator over vector’s features

Parameters

mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr) Add a spatial filter to iteration,
only geometries not disjoint with mask will be included.

• if None: No spatial filter

• if Footprint or shapely polygon: Polygon

• if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

clip: bool Returns intersection of geometries and mask. Caveat: A clipped geometry might not be of the
same type as the original geometry. e.g: polygon might be clipped to might be converted to one of
those:

• polygon

• line

• point

• multipolygon

• multiline

1.2. Sources 49



buzzard Documentation, Release 0.6.5

• multipoint

• geometrycollection

slicing: slice Slice of the iteration to return. It is applied after spatial filtering

Returns

iterable of geojson feature (dict)

Example

>>> for geojson in ds.stocks.iter_geojson():
print('exterior-point-count:{}, volume:{}m**3'.format(

len(geojson['geometry']['coordinates'][0]),
geojson['properties']['volume']

))

get_geojson(index, mask=None, clip=False)
Fetch a single feature in vector. See ASourceVector.iter_geojson

extent_origin
Descriptor object to manage deprecation

class buzzard.AStored(<implementation detail>)
Base abstract class defining the common behavior of all sources that are stored somewhere (like RAM or disk).

Features Defined

• Has an opening mode

property mode
Open mode, one of {‘r’, ‘w’}

class buzzard.AStoredVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors that are stored somewhere (like RAM or disk).

Features Defined

• Has an insert_data method that allows to write geometries to storage

insert_data(geom, fields=(), index=- 1)
Insert a feature in vector.

This method is not thread-safe.

50 Chapter 1. API



buzzard Documentation, Release 0.6.5

Parameters

geom: shapely.base.BaseGeometry or nested sequence of coordinates

fields: sequence or dict Feature’s fields, missing or None fields are defaulted.

• if empty sequence: Keep all fields defaulted

• if sequence of length len(self.fields): Fields to be set, same order as self.fields

• if dict: Mapping of fields to be set

index: int

• if -1: append feature

• else: insert feature at index (if applicable)

Example

>>> poly = shapely.geometry.box(10, 10, 42, 43)
>>> fields = {'volume': 42.24}
>>> ds.stocks.insert_data(poly, fields)

Caveat

When using a Vector backed by a driver (like an OGR driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Vector.

class buzzard.AEmissary(<implementation detail>)
Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

• Has a driver (like “GTiff” for GDAL’s geotiff driver)

• Has open_options

• Has a path (if the driver supports it)

• Can be deleted (if the driver supports it)

property driver
Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

property open_options
Get the list of options used for opening

property path
Get the file system path of this source, may be the empty string if not applicable

property delete
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

1.2. Sources 51



buzzard Documentation, Release 0.6.5

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

property remove
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

class buzzard.AEmissaryVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors that are backed by a driver.

Features Defined

• Has a layer (if the driver supports it)

property layer

class buzzard.APooledEmissary(<implementation detail>)
Base abstract class defining the common behavior of all sources that can deactivate and reactivate their underly-
ing driver at will.

This is useful to balance the number of active file descriptors. This is useful to perform concurrent reads if the
driver does no support it.

Features Defined

• An activate method to manually open the driver (Mostly useless feature since opening is automatic if
necessary)

• A deactivate method to close the driver (Useful to flush data to disk)

• An active_count property

• An active property

activate()
Make sure that at least one driver object is active for this Raster/Vector

deactivate()
Collect all active driver object for this Raster/Vector. If a driver object is currently being used, will raise
an exception.

52 Chapter 1. API



buzzard Documentation, Release 0.6.5

property active_count
Count how many driver objects are currently active for this Raster/Vector

property active
Is there any driver object currently active for this Raster/Vector

class buzzard.APooledEmissaryVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors that can deactivate and reactivate their underly-
ing driver at will.

Features Defined

None

class buzzard.GDALFileVector(<implementation detail>)
Concrete class defining the behavior of a GDAL vector using a file

>>> help(Dataset.open_vector)
>>> help(Dataset.create_vector)

Features Defined

None

1.2.6 GDALMemoryVector

class buzzard.ASource(<implementation detail>)
Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

• Has a stored spatial reference

• Has a virtual spatial reference that is influenced by the Dataset’s opening mode

• Can be closed

property wkt_stored
The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

property proj4_stored
The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

property wkt_virtual
The spatial reference considered to be written in the metadata of a source, in wkt format.

string or None

property proj4_virtual
The spatial reference considered to be written in the metadata of a source, in proj4 format.

string or None

1.2. Sources 53



buzzard Documentation, Release 0.6.5

get_keys()
Get the list of keys under which this source is registered to in the Dataset

property close
Close a source with a call or a context management. The close attribute returns an object that can be both
called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:

# code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:

# code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:

# code...

__del__()

class buzzard.ASourceVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors.

Features Defined

• Has a type that defines the type of geometry (like “Polygon”)

• Has fields that define the type of informations that is paired with each geometries

• Has a stored extent that allows to retrieve the current extent of all the geometries

• Has a length that indicates how many geometries this source contains.

• Has several read functions (like iter_data) to retrieve geometries in their current state to shapely objects

property type
Geometry type

property fields
Fields definition

property extent
Get the vector’s extent in work spatial reference. (x then y)

Example

>>> minx, maxx, miny, maxy = ds.roofs.extent

property extent_stored
Get the vector’s extent in stored spatial reference. (minx, miny, maxx, maxy)

property bounds
Get the vector’s bounds in work spatial reference. (min then max)

54 Chapter 1. API



buzzard Documentation, Release 0.6.5

Example

>>> minx, miny, maxx, maxy = ds.roofs.extent

property bounds_stored
Get the vector’s bounds in stored spatial reference. (min then max)

__len__()
Return the number of features in vector

iter_data(fields=None, geom_type='shapely', mask=None, clip=False, slicing=slice(0, None, 1))
Create an iterator over vector’s features

Parameters

fields: None or string or -1 or sequence of string/int Which fields to include in iteration

• if None, empty sequence or empty string: No fields included

• if -1: All fields included

• if string: Name of fields to include (separated by comma or space)

• if sequence: List of indices / names to include

geom_type: {‘shapely’, ‘coordinates’} Returned geometry type

mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr) Add a spatial filter to iteration,
only geometries not disjoint with mask will be included.

• if None: No spatial filter

• if Footprint or shapely polygon: Polygon

• if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

clip: bool Returns intersection of geometries and mask. Caveat: A clipped geometry might not be of the
same type as the original geometry. e.g: polygon might be clipped to might be converted to one of
those:

• polygon

• line

• point

• multipolygon

• multiline

• multipoint

• geometrycollection

slicing: slice Slice of the iteration to return. It is applied after spatial filtering

1.2. Sources 55



buzzard Documentation, Release 0.6.5

Yields

feature: geometry or (geometry,) or (geometry, *fields)

• If geom_type is ‘shapely’: geometry is a shapely geometry.

• If geom_type is coordinates: geometry is a nested lists of numpy arrays.

• If fields is not a sequence: feature is geometry or (geometry, *fields), depending on the number of
fields to yield.

• If fields is a sequence or a string: feature is (geometry,) or (geometry, *fields). Use fields=[-1] to
get a monad containing all fields.

Examples

>>> for polygon, volume, stock_type in ds.stocks.iter_data('volume,type'):
print('area:{}m**2, volume:{}m**3'.format(polygon.area, volume))

>>> for polygon, in ds.stocks.iter_data([]):
print('area:{}m**2'.format(polygon.area))

>>> for polygon in ds.stocks.iter_data():
print('area:{}m**2'.format(polygon.area))

get_data(index, fields=- 1, geom_type='shapely', mask=None, clip=False)
Fetch a single feature in vector. See ASourceVector.iter_data

iter_geojson(mask=None, clip=False, slicing=slice(0, None, 1))
Create an iterator over vector’s features

Parameters

mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr) Add a spatial filter to iteration,
only geometries not disjoint with mask will be included.

• if None: No spatial filter

• if Footprint or shapely polygon: Polygon

• if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

clip: bool Returns intersection of geometries and mask. Caveat: A clipped geometry might not be of the
same type as the original geometry. e.g: polygon might be clipped to might be converted to one of
those:

• polygon

• line

• point

• multipolygon

• multiline

• multipoint

• geometrycollection

slicing: slice Slice of the iteration to return. It is applied after spatial filtering

56 Chapter 1. API



buzzard Documentation, Release 0.6.5

Returns

iterable of geojson feature (dict)

Example

>>> for geojson in ds.stocks.iter_geojson():
print('exterior-point-count:{}, volume:{}m**3'.format(

len(geojson['geometry']['coordinates'][0]),
geojson['properties']['volume']

))

get_geojson(index, mask=None, clip=False)
Fetch a single feature in vector. See ASourceVector.iter_geojson

extent_origin
Descriptor object to manage deprecation

class buzzard.AStored(<implementation detail>)
Base abstract class defining the common behavior of all sources that are stored somewhere (like RAM or disk).

Features Defined

• Has an opening mode

property mode
Open mode, one of {‘r’, ‘w’}

class buzzard.AStoredVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors that are stored somewhere (like RAM or disk).

Features Defined

• Has an insert_data method that allows to write geometries to storage

insert_data(geom, fields=(), index=- 1)
Insert a feature in vector.

This method is not thread-safe.

Parameters

geom: shapely.base.BaseGeometry or nested sequence of coordinates

fields: sequence or dict Feature’s fields, missing or None fields are defaulted.

• if empty sequence: Keep all fields defaulted

• if sequence of length len(self.fields): Fields to be set, same order as self.fields

• if dict: Mapping of fields to be set

index: int

• if -1: append feature

• else: insert feature at index (if applicable)

1.2. Sources 57



buzzard Documentation, Release 0.6.5

Example

>>> poly = shapely.geometry.box(10, 10, 42, 43)
>>> fields = {'volume': 42.24}
>>> ds.stocks.insert_data(poly, fields)

Caveat

When using a Vector backed by a driver (like an OGR driver), the data might be flushed to disk only after
the garbage collection of the driver object. To be absolutely sure that the driver cache is flushed to disk,
call .close or .deactivate on this Vector.

class buzzard.AEmissary(<implementation detail>)
Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

• Has a driver (like “GTiff” for GDAL’s geotiff driver)

• Has open_options

• Has a path (if the driver supports it)

• Can be deleted (if the driver supports it)

property driver
Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

property open_options
Get the list of options used for opening

property path
Get the file system path of this source, may be the empty string if not applicable

property delete
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

property remove
Delete a source with a call or a context management. May raise an exception if not applicable or if mode
= ‘r’ The delete attribute returns an object that can be both called and used in a with statement

58 Chapter 1. API



buzzard Documentation, Release 0.6.5

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:

# code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:

# code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:

# code...

class buzzard.AEmissaryVector(<implementation detail>)
Base abstract class defining the common behavior of all vectors that are backed by a driver.

Features Defined

• Has a layer (if the driver supports it)

property layer

class buzzard.GDALMemoryVector(<implementation detail>)
Concrete class defining the behavior of a GDAL raster using the “Memory” driver

>>> help(Dataset.create_vector)

Features Defined

None

1.3 Footprint

class buzzard.Footprint(**kwargs)
Immutable object representing the location and size of a spatially localized raster. All methods are thread-safe.

The Footprint class:

• is a toolbox class designed to position a rectangle in both image space and geometry space,

• can be seen as a shapely.geometry.Polygon rectangle that also defines a grid of pixels,

• its main purpose is to simplify the manipulation of windows in rasters,

• has many accessors,

• has many algorithms,

• is a constant object,

• is designed to work with any rectangle in space (like non north-up/west-left rasters),

• is independent from projections, units and files,

• uses affine library internally for conversions (https://github.com/sgillies/affine).

Warning: This class being complex and full python, the constructor is too slow for certain use cases
(~0.5ms).

1.3. Footprint 59

https://github.com/sgillies/affine


buzzard Documentation, Release 0.6.5

Method category Method names
Footprint construction from scratch __init__, of_extent

from Footprint __and__, intersection, erode, dilate, . . .
Conversion extent, coords, geom, __geo_interface__
Accessors Spatial - Size and vectors size, width, height, diagvec, . . .

Spatial - Coordinates tl, bl, br, tr, . . .
Spatial - Misc area, length, semiminoraxis, . . .
Raster - Size rsize, rwidth, rheight, . . .
Raster - Indices rtl, rbl, rbr, ttr, . . .
Raster - Misc rarea, rlength, rsemiminoraxis, . . .
Affine transformations pxsize, pxvec, angle, . . .

Binary predicates __eq__, . . .
Numpy shape, meshgrid_raster, meshgrid_spatial, slice_in, . . .
Coordinates conversions spatial_to_raster, raster_to_spatial
Geometry / Raster conversions find_polygons, burn_polygons, . . .
Tiling tile, tile_count, tile_occurrence
Serialization __str__, . . .

Informations on geo transforms (gt) and affine matrices

• http://www.perrygeo.com/python-affine-transforms.html

• https://pypi.python.org/pypi/affine/1.0

GDAL ordering:

c a b f d e
tlx width of a pixel row rotation tly column rotation height of a pixel

>>> c, a, b, f, d, e = fp.gt
>>> tlx, dx, rx, tly, ry, dy = fp.gt

Matrix ordering:

a b c d e f
width of a pixel row rotation tlx column rotation height of a pixel tly

>>> a, b, c, d, e, f = fp.aff6
>>> dx, rx, tlx, ry, dy, tly = fp.aff6

There are only two ways to construct a Footprint, but several high level constructors exist, such as .intersection.

Usage 1

>>> buzz.Footprint(tl=(0, 10), size=(10, 10), rsize=(100, 100))

Usage 2

>>> buzz.Footprint(gt=(0, .1, 0, 10, 0, -.1), rsize=(100, 100))

60 Chapter 1. API

http://www.perrygeo.com/python-affine-transforms.html
https://pypi.python.org/pypi/affine/1.0


buzzard Documentation, Release 0.6.5

Parameters

tl: (nbr, nbr) raster spatial top left coordinates

gt: (nbr, nbr, nbr, nbr, nbr, nbr) geotransforms with GDAL ordering

size: (nbr, nbr) Size of Footprint in space (unsigned)

rsize: (int, int) Size of raster in pixel (unsigned integers)

__and__(other)
Returns Footprint.intersection

classmethod of_extent(extent, scale)
Create a Footprint from a rectangle extent and a scale

Parameters

extent: (nbr, nbr, nbr, nbr) Spatial coordinates of (minx, maxx, miny, maxy) defining a rectangle

scale: nbr or (nbr, nbr) Resolution of output Footprint:

• if nbr: resolution = [a, -a]

• if (nbr, nbr): resolution [a, b]

clip(startx, starty, endx, endy)
Construct a new Footprint by clipping self using pixel indices

To clip using coordinates see Footprint.intersection.

Parameters

startx: int or None Same rules as regular python slicing

starty: int or None Same rules as regular python slicing

endx: int or None Same rules as regular python slicing

endy: int or None Same rules as regular python slicing

Returns

fp: Footprint The new clipped Footprint

erode(self, inward_count, /)
erode(self, inward_count_x, inward_count_y, /) erode(self, inward_count_left, inward_count_right, in-
ward_count_top, inward_count_bottom, /)

Erode self’s edges by the given pixel count to construct a new Footprint.

A negative erosion is a dilation.

1.3. Footprint 61



buzzard Documentation, Release 0.6.5

Parameters

*args: int or (int, int) or (int, int, int, int) When int, erode all 4 directions by that much pixels When
(int, int), erode x and y by a different number of pixel When (int, int, int, int), erode all 4 directions
with a different number of pixel

Returns

Footprint

dilate(self, outward_count, /)
dilate(self, outward_count_x, outward_count_y, /) dilate(self, outward_count_left, outward_count_right,
outward_count_top, outward_count_bottom, /)

Dilate self’s edges by the given pixel count to construct a new Footprint.

A negative dilation is an erosion.

Parameters

*args: int or (int, int) or (int, int, int, int) When int, dilate all 4 directions by that much pixels When
(int, int), dilate x and y by a different number of pixel When (int, int, int, int), dilate all 4 directions
with a different number of pixel

Returns

Footprint

intersection(self, *objects, scale='self', rotation='auto', alignment='auto', homogeneous=False)
Construct a Footprint bounding the intersection of geometric objects, self being one of the of input geom-
etry. Inputs’ intersection is always within output Footprint.

Parameters

*objects: *object Any object with a __geo_interface__ attribute defining a geometry, like a Footprint or
a shapely object.

scale: one of {‘self’, ‘highest’, ‘lowest’} or (nbr, nbr) or nbr ‘self’: Output Footprint’s resolution is the
same as self ‘highest’: Output Footprint’s resolution is the highest one among the input Footprints
‘lowest’: Output Footprint’s resolution is the lowest one among the input Footprints (nbr, nbr): Signed
pixel size, aka scale nbr: Signed pixel width. Signed pixel height is assumed to be -width

rotation: one of {‘auto’, ‘fit’} or nbr

‘auto’ If scale designate a Footprint object, its rotation is chosen Else, self’s rotation is chosen

‘fit’ Output Footprint is the rotated minimum bounding rectangle

nbr Angle in degree

alignment: {‘auto’, ‘tl’, (nbr, nbr)}

‘auto’

If scale and rotation designate the same Footprint object, its alignment is chosen

Else, ‘tl’ alignment is chosen

62 Chapter 1. API



buzzard Documentation, Release 0.6.5

‘tl’: Ouput Footprint’s alignement is the top left most point of the bounding rectangle of the
intersection

(nbr, nbr): Coordinate of a point that lie on the grid. This point can be anywhere in space.

homogeneous: bool False: No effect True: Raise an exception if all input Footprints do not lie on the
same grid as self.

Returns

Footprint

move(tl, tr=None, br=None, round_coordinates=False)
Create a copy of self moved by an Affine transformation by providing new points. rsize is always conserved

Usage cases

tl tr br Affine transformations possible
coord None None Translation
coord coord None Translation, Rotation, Scale x and y uniformly with positive real
coord coord coord Translation, Rotation, Scale x and y independently with reals

Parameters

tl: (nbr, nbr) New top left coordinates

tr: (nbr, nbr) New top right coordinates

br: (nbr, nbr) New bottom right coordinates

round_coordinates: bool Round the input coordinates with respect to buzz.env.significant, so that the
output Footprint is as much similar as possible as the input Footprint regarding those properties: -
angle - pxsize - pxsizex / pxsizey

This option helps a lot if the input coordinates suffered from floating point precision loss since it will
cancel the noise in the resulting transformation matrix.

Warning: Only work when tr and br are both provided

Returns

Footprint

property extent
Get the Footprint’s extent (x then y)

1.3. Footprint 63



buzzard Documentation, Release 0.6.5

Example

>>> minx, maxx, miny, maxy = fp.extent
>>> plt.imshow(arr, extent=fp.extent)

fp.extent from fp.bounds using numpy fancy indexing

>>> minx, maxx, miny, maxy = fp.bounds[[0, 2, 1, 3]]

property bounds
Get the Footprint’s bounds (min then max)

Example

>>> minx, miny, maxx, maxy = fp.bounds

fp.bounds from fp.extent using numpy fancy indexing

>>> minx, miny, maxx, maxy = fp.extent[[0, 2, 1, 3]]

property coords
Get corners coordinates

Example

>>> tl, bl, br, tr = fp.coords

property poly
Convert self to shapely.geometry.Polygon

property __geo_interface__

property size
(||raster left - raster right||, ||raster top - raster bottom||)

Type Spatial distances

property sizex
||raster left - raster right||

Type Spatial distance

property sizey
||raster top - raster bottom||

Type Spatial distance

property width
||raster left - raster right||, alias for sizex

Type Spatial distance

property height
||raster top - raster bottom||, alias for sizey

Type Spatial distance

property w
||raster left - raster right||, alias for sizex

64 Chapter 1. API



buzzard Documentation, Release 0.6.5

Type Spatial distance

property h
||raster top - raster bottom||, alias for sizey

Type Spatial distance

property lrvec
(raster right - raster left)

Type Spatial vector

property tbvec
(raster bottom - raster top)

Type Spatial vector

property diagvec
(raster bottom right - raster top left)

Type Spatial vector

property tl
raster top left (x, y)

Type Spatial coordinates

property tlx
raster top left (x)

Type Spatial coordinate

property tly
raster top left (y)

Type Spatial coordinate

property bl
raster bottom left (x, y)

Type Spatial coordinates

property blx
raster bottom left (x)

Type Spatial coordinate

property bly
raster bottom left (y)

Type Spatial coordinate

property br
raster bottom right (x, y)

Type Spatial coordinates

property brx
raster bottom right (x)

Type Spatial coordinate

property bry
raster bottom right (y)

Type Spatial coordinate

1.3. Footprint 65



buzzard Documentation, Release 0.6.5

property tr
raster top right (x, y)

Type Spatial coordinates

property trx
raster top right (x)

Type Spatial coordinate

property try_
raster top right (y) Don’t forget the trailing underscore

Type Spatial coordinate

property t
raster top center (x, y)

Type Spatial coordinates

property tx
raster top center (x)

Type Spatial coordinate

property ty
raster top center (y)

Type Spatial coordinate

property l
raster center left (x, y)

Type Spatial coordinates

property lx
raster center left (x)

Type Spatial coordinate

property ly
raster center left (y)

Type Spatial coordinate

property b
raster bottom center (x, y)

Type Spatial coordinates

property bx
raster bottom center (x)

Type Spatial coordinate

property by
raster bottom center (y)

Type Spatial coordinate

property r
raster center right (x, y)

Type Spatial coordinates

property rx
raster center right (x)

66 Chapter 1. API



buzzard Documentation, Release 0.6.5

Type Spatial coordinate

property ry
raster center right (y)

Type Spatial coordinate

property c
raster center (x, y)

Type Spatial coordinates

property cx
raster center (x)

Type Spatial coordinate

property cy
raster center (y)

Type Spatial coordinate

property semiminoraxis
half-size of the smaller side

Type Spatial distance

property semimajoraxis
half-size of the bigger side

Type Spatial distance

property area
pixel count

Type Area

property length
circumference of the outer ring

Type Length

property rsize
(pixel per line, pixel per column)

Type Pixel quantities

property rsizex
pixel per line

Type Pixel quantity

property rsizey
pixel per column

Type Pixel quantity

property rwidth
pixel per line, alias for rsizex

Type Pixel quantity

property rheight
pixel per column, alias for rsizey

Type Pixel quantity

1.3. Footprint 67



buzzard Documentation, Release 0.6.5

property rw
pixel per line, alias for rsizex

Type Pixel quantity

property rh
pixel per column, alias for rsizey

Type Pixel quantity

property rtl
raster top left pixel (x=0, y=0)

Type Indices

property rtlx
raster top left pixel (x=0)

Type Index

property rtly
raster top left pixel (y=0)

Type Index

property rbl
raster bottom left pixel (x=0, y)

Type Indices

property rblx
raster bottom left pixel (x=0)

Type Index

property rbly
raster bottom left pixel (y)

Type Index

property rbr
raster bottom right pixel (x, y)

Type Indices

property rbrx
raster bottom right pixel (x)

Type Index

property rbry
raster bottom right pixel (y)

Type Index

property rtr
raster top right pixel (x, y=0)

Type Indices

property rtrx
raster top right pixel (x)

Type Index

property rtry
raster top right pixel (y=0)

68 Chapter 1. API



buzzard Documentation, Release 0.6.5

Type Index

property rt
raster top center pixel (x truncated, y=0)

Type Indices

property rtx
raster top center pixel (x truncated)

Type Index

property rty
raster top center pixel (y=0)

Type Index

property rl
raster center left pixel (x=0, y truncated)

Type Indices

property rlx
raster center left pixel (x=0)

Type Index

property rly
raster center left pixel (y truncated)

Type Index

property rb
raster bottom center pixel (x truncated, y)

Type Indices

property rbx
raster bottom center pixel (x truncated)

Type Index

property rby
raster bottom center pixel (y)

Type Index

property rr
raster center right pixel (x, y truncated)

Type Indices

property rrx
raster center right pixel (x)

Type Index

property rry
raster center right pixel (y truncated)

Type Index

property rc
raster center pixel (x truncated, y truncated)

Type Indices

1.3. Footprint 69



buzzard Documentation, Release 0.6.5

property rcx
raster center pixel (x truncated)

Type Index

property rcy
raster center pixel (y truncated)

Type Index

property rsemiminoraxis
half pixel count (truncated) of the smaller side

Type Pixel quantity

property rsemimajoraxis
half pixel count (truncated) of the bigger side

Type Pixel quantity

property rarea
pixel count

Type Pixel quantity

property rlength
pixel count in the outer ring

Type Pixel quantity

property gt
First 6 numbers of the affine transformation matrix, GDAL ordering

property aff33
The affine transformation matrix

property aff23
Top two rows of the affine transformation matrix

property aff6
First 6 numbers of the affine transformation matrix, left-right/top-bottom ordering

property affine
Underlying affine object

property scale
scale used in the affine transformation, np.abs(scale) == pxsize

Type Spatial vector

property angle
rotation used in the affine transformation, (0 is north-up)

Type Angle in degree

property pxsize
||pixel bottom right - pixel top left|| (x, y)

Type Spatial distance

property pxsizex
||pixel right - pixel left|| (x)

Type Spatial distance

70 Chapter 1. API



buzzard Documentation, Release 0.6.5

property pxsizey
||pixel bottom - pixel top|| (y)

Type Spatial distance

property pxvec
(pixel bottom right - pixel top left)

Type Spatial vector

property pxtbvec
(pixel bottom left - pixel top left)

Type Spatial vector

property pxlrvec
(pixel top right - pixel top left)

Type Spatial vector

__eq__(other)
Returns self.equals

__ne__(other)
Returns not self.equals

share_area(other)
Binary predicate: Does other share area with self

Parameters

other: Footprint or shapely object

Returns

bool

equals(other)
Binary predicate: Is other Footprint exactly equal to self

Parameters

other: Footprint

Returns

bool

almost_equals(other)
Binary predicate: Is other Footprint almost equal to self with regard to buzz.env.significant.

1.3. Footprint 71



buzzard Documentation, Release 0.6.5

Parameters

other: Footprint

Returns

bool

same_grid(other)
Binary predicate: Does other Footprint lie on the same grid as self

Parameters

other: Footprint

Returns

bool

property shape
(pixel per column, pixel per line)

Type Pixel quantities

property meshgrid_raster
Compute indice matrices

Returns

(x, y): (np.ndarray, np.ndarray) Raster indices matrices with shape = self.shape with dtype =
env.default_index_dtype

property meshgrid_spatial
Compute coordinate matrices

Returns

(x, y): (np.ndarray, np.ndarray) Spatial coordinate matrices with shape = self.shape with dtype =
float32

meshgrid_raster_in(other, dtype=None, op=<ufunc 'floor'>)
Compute raster coordinate matrices of self in other referential

Parameters

other: Footprint

dtype: None or convertible to np.dtype Output dtype If None: Use buzz.env.default_index_dtype

op: None or function operating on a vector Function to apply before casting output to dtype If None:
Do not transform data before casting

72 Chapter 1. API



buzzard Documentation, Release 0.6.5

Returns

(x, y): (np.ndarray, np.ndarray) Raster coordinate matrices with shape = self.shape with dtype = dtype

slice_in(other, clip=False)
Compute location of self inside other with slice objects. If other and self do not have the same rotation,
operation is undefined

Parameters

other: Footprint

clip: bool

False Does nothing

True Clip the slices to other bounds. If other and self do not share area, at least one of the returned
slice will have slice.start == slice.stop

Returns

(yslice, xslice): (slice, slice)

Example

Burn small into big if small is within big >>> big_data[small.slice_in(big)] = small_data

Burn small into big where overlapping >>> big_data[small.slice_in(big, clip=True)] =
small_data[big.slice_in(small, clip=True)]

spatial_to_raster(xy, dtype=None, op=<ufunc 'floor'>)
Convert xy spatial coordinates to raster xy indices

Parameters

xy: sequence of numbers of shape (. . . , 2) Spatial coordinates

dtype: None or convertible to np.dtype Output dtype If None: Use buzz.env.default_index_dtype

op: None or vectorized function Function to apply before casting output to dtype If None: Do not trans-
form data before casting

Returns

out_xy: np.ndarray Raster indices with shape = np.asarray(xy).shape with dtype = dtype

Prototype inspired from https://mapbox.github.io/rasterio/api/rasterio.io.html#rasterio.io.
TransformMethodsMixin.index

raster_to_spatial(xy)
Convert xy raster coordinates to spatial coordinates

1.3. Footprint 73

https://mapbox.github.io/rasterio/api/rasterio.io.html#rasterio.io.TransformMethodsMixin.index
https://mapbox.github.io/rasterio/api/rasterio.io.html#rasterio.io.TransformMethodsMixin.index


buzzard Documentation, Release 0.6.5

Parameters

xy: sequence of numbers of shape (. . . , 2) Raster coordinages

Returns

out_xy: np.ndarray Spatial coordinates with shape = np.asarray(xy).shape with dtype = dtype

find_lines(arr, output_offset='middle', merge=True)
Create a list of line-strings from a mask. Works with connectivity 4 and 8. The input raster is preprocessed
using skimage.morphology.thin. The output linestrings are postprocessed using shapely.ops.linemerge.

Warning: All standalone pixels contained in arr will be ignored.

Parameters

arr: np.ndarray of bool of shape (self.shape)

output_offset: ‘middle’ or (nbr, nbr) Coordinate offset in meter if middle: substituted by self.pxvec / 2

Returns

list of shapely.geometry.LineString

Exemple

>>> import buzzard as buzz
>>> import numpy as np
>>> import networkx as nx

>>> with buzz.Env(allow_complex_footprint=1):
... a = np.asarray([
... [0, 1, 1, 1, 0],
... [0, 1, 0, 0, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 0, 0, 0],
... [0, 1, 1, 0, 0],
...
... ])
... fp = buzz.Footprint(gt=(0, 1, 0, 0, 0, 1), rsize=(a.shape))
... lines = fp.find_lines(a, (0, 0))
...
... # Display input / output
... print(fp)
... print(a.astype(int))
... for i, l in enumerate(lines, 1):
... print(f'edge-id:{i} of type:{type(l)} and length:{l.length}')
... print(fp.burn_lines(l).astype(int) * i)
...
... # Build a networkx graph
... g = nx.Graph([(l.coords[0], l.coords[-1]) for l in lines])

(continues on next page)

74 Chapter 1. API



buzzard Documentation, Release 0.6.5

(continued from previous page)

... print(repr(g.degree))

...
Footprint(tl=(0.000000, 0.000000), scale=(1.000000, 1.000000), angle=0.000000,
→˓ rsize=(5, 5))
[[0 1 1 1 0]
[0 1 0 0 0]
[0 1 1 1 0]
[0 1 0 0 0]
[0 1 1 0 0]]

edge-id:1 of type:<class 'shapely.geometry.linestring.LineString'> and
→˓length:2.0
[[0 0 0 0 0]
[0 0 0 0 0]
[0 1 1 1 0]
[0 0 0 0 0]
[0 0 0 0 0]]

edge-id:2 of type:<class 'shapely.geometry.linestring.LineString'> and
→˓length:3.0
[[0 0 0 0 0]
[0 0 0 0 0]
[0 2 0 0 0]
[0 2 0 0 0]
[0 2 2 0 0]]

edge-id:3 of type:<class 'shapely.geometry.linestring.LineString'> and
→˓length:4.0
[[0 3 3 3 0]
[0 3 0 0 0]
[0 3 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]]

DegreeView({(3.0, 2.0): 1, (1.0, 2.0): 3, (2.0, 4.0): 1, (3.0, 0.0): 1})

burn_lines(obj, all_touched=False, labelize=False)
Creates a 2d image from lines. Uses gdal.Polygonize.

Parameters

obj: shapely line or nested iterators over shapely lines

labelize: bool

• if False: Create a boolean mask

• if True: Create an integer matrix containing lines indices from order in input

Returns

np.ndarray

• of bool or uint8 or int

• of shape (self.shape)

find_polygons(mask)
Creates a list of polygons from a mask. Uses gdal.Polygonize.

1.3. Footprint 75



buzzard Documentation, Release 0.6.5

Warning: This method is not equivalent to cv2.findContours that considers that pixels are points and
therefore returns the indices of the pixels of the contours of the features.

This method consider that the pixels are areas and therefore returns the coordinates of the points that
surrounds the features.

Warning: Some inputs that may produce invalid polygons (see below) are fixed with the
shapely.geometry.Polygon.buffer method.

Shapely will issue several warnings while buzzard fixes the polygons.

>>> # 0 0 0 0 0 0 0
... # 0 1 1 1 0 0 0
... # 0 1 1 1 1 0 0
... # 0 1 1 1 0 1 0 <- This feature has a hole near an edge. GDAL
→˓produces a self
... # 0 1 1 1 1 1 1 touching polygon without holes. A polygon with one
→˓hole is
... # 0 1 1 1 1 1 1 returned with this method.
... # 0 0 0 0 0 0 0

Parameters

mask: np.ndarray of bool of shape (self.shape)

Returns

list of shapely.geometry.Polygon

burn_polygons(obj, all_touched=False, labelize=False)
Creates a 2d image from polygons. Uses gdal.RasterizeLayer.

Warning: This method is not equivalent to cv2.drawContours that considers that pixels are points and
therefore expect as input the indices of the outer pixels of each feature.

This method consider that the pixels are areas and therefore expect as input the coordinates of the
points surrounding the features.

Parameters

obj: shapely polygon or nested iterators over shapely polygons

all_touched: bool Burn all polygons touched

76 Chapter 1. API



buzzard Documentation, Release 0.6.5

Returns

np.ndarray of bool or uint8 or int of shape (self.shape)

Examples

>>> burn_polygons(poly)
>>> burn_polygons([poly, poly])
>>> burn_polygons([poly, poly, [poly, poly], multipoly, poly])

tile(size, overlapx=0, overlapy=0, boundary_effect='extend', boundary_effect_locus='br')
Tile a Footprint to a matrix of Footprint

Parameters

size: (int, int) Tile width and tile height, in pixel

overlapx: int Width of a tile overlapping with each direct horizontal neighbors, in pixel

overlapy: int Height of a tile overlapping with each direct vertical neighbors, in pixel

boundary_effect: {‘extend’, ‘exclude’, ‘overlap’, ‘shrink’, ‘exception’} Behevior at boundary effect
locus

• ‘extend’

– Preserve tile size

– Preserve overlapx and overlapy

– Sacrifice global bounds, results in tiles partially outside bounds at locus (if necessary)

– Preserve tile count

– Preserve boundary pixels coverage

• ‘overlap’

– Preserve tile size

– Sacrifice overlapx and overlapy, results in tiles overlapping more at locus (if necessary)

– Preserve global bounds

– Preserve tile count

– Preserve boundary pixels coverage

• ‘exclude’

– Preserve tile size

– Preserve overlapx and overlapy

– Preserve global bounds

– Sacrifice tile count, results in tiles excluded at locus (if necessary)

– Sacrifice boundary pixels coverage at locus (if necessary)

• ‘shrink’

– Sacrifice tile size, results in tiles shrinked at locus (if necessary)

1.3. Footprint 77



buzzard Documentation, Release 0.6.5

– Preserve overlapx and overlapy

– Preserve global bounds

– Preserve tile count

– Preserve boundary pixels coverage

• ‘exception’

– Raise an exception if tiles at locus do not lie inside the global bounds

boundary_effect_locus: {‘br’, ‘tr’, ‘tl’, ‘bl’} Locus of the boundary effects

• ‘br’ : Boundary effect occurs at the bottom right corner of the raster, top left coordinates are
preserved

• ‘tr’ : Boundary effect occurs at the top right corner of the raster, bottom left coordinates are
preserved

• ‘tl’ : Boundary effect occurs at the top left corner of the raster, bottom right coordinates are
preserved

• ‘bl’ : Boundary effect occurs at the bottom left corner of the raster, top right coordinates are
preserved

Returns

np.ndarray

• of dtype=object (Footprint)

• of shape (M, N)

– with M the line count

– with N the column count

tile_count(rowcount, colcount, overlapx=0, overlapy=0, boundary_effect='extend', bound-
ary_effect_locus='br')

Tile a Footprint to a matrix of Footprint

Parameters

rowcount: int Tile count per row

colcount: int Tile count per column

overlapx: int Width of a tile overlapping with each direct horizontal neighbors, in pixel

overlapy: int Height of a tile overlapping with each direct vertical neighbors, in pixel

boundary_effect: {‘extend’, ‘exclude’, ‘overlap’, ‘shrink’, ‘exception’} Behevior at boundary effect
locus

• ‘extend’

– Preserve tile size

– Preserve overlapx and overlapy

– Sacrifice global bounds, results in tiles partially outside bounds at locus (if necessary)

– Preserve tile count

78 Chapter 1. API



buzzard Documentation, Release 0.6.5

– Preserve boundary pixels coverage

• ‘overlap’

– Preserve tile size

– Sacrifice overlapx and overlapy, results in tiles overlapping more at locus (if necessary)

– Preserve global bounds

– Preserve tile count

– Preserve boundary pixels coverage

• ‘exclude’

– Preserve tile size

– Preserve overlapx and overlapy

– Preserve global bounds

– Preserve tile count

– Sacrifice boundary pixels coverage at locus (if necessary)

• ‘shrink’

– Sacrifice tile size, results in tiles shrinked at locus (if necessary)

– Preserve overlapx and overlapy

– Preserve global bounds

– Preserve tile count

– Preserve boundary pixels coverage

• ‘exception’

– Raise an exception if tiles at locus do not lie inside the global bounds

boundary_effect_locus: {‘br’, ‘tr’, ‘tl’, ‘bl’} Locus of the boundary effects

• ‘br’ : Boundary effect occurs at the bottom right corner of the raster, top left coordinates are
preserved

• ‘tr’ : Boundary effect occurs at the top right corner of the raster, bottom left coordinates are
preserved

tile_occurrence(size, pixel_occurrencex, pixel_occurrencey, boundary_effect='extend', bound-
ary_effect_locus='br')

Tile a Footprint to a matrix of Footprint Each pixel occur pixel_occurrencex * pixel_occurrencey times
overall in the output

Parameters

size: (int, int) Tile width and tile height, in pixel

pixel_occurrencex: int Number of occurence of each pixel in a line of tile

pixel_occurrencey: int Number of occurence of each pixel in a column of tile

boundary_effect: {‘extend’, ‘exclude’, ‘overlap’, ‘shrink’, ‘exception’} Behevior at boundary effect
locus

• ‘extend’

1.3. Footprint 79



buzzard Documentation, Release 0.6.5

– Preserve tile size

– Preserve overlapx and overlapy

– Sacrifice global bounds, results in tiles partially outside bounds at locus (if necessary)

– Preserve tile count

– Preserve boundary pixels coverage

• ‘overlap’

– Preserve tile size

– Sacrifice overlapx and overlapy results in tiles overlapping more at locus (if necessary)

– Preserve global bounds

– Preserve tile count

– Preserve boundary pixels coverage

• ‘exclude’

– Preserve tile size

– Preserve overlapx and overlapy

– Preserve global bounds

– Sacrifice tile count, results in tiles excluded at locus (if necessary)

– Sacrifice boundary pixels coverage at locus (if necessary)

• ‘shrink’

– Sacrifice tile size, results in tiles shrinked at locus (if necessary)

– Preserve overlapx and overlapy

– Preserve global bounds

– Preserve tile count

– Preserve boundary pixels coverage

• ‘exception’ Raise an exception if tiles at locus do not lie inside the global bounds

boundary_effect_locus: {‘br’, ‘tr’, ‘tl’, ‘bl’} Locus of the boundary effects

• ‘br’ : Boundary effect occurs at the bottom right corner of the raster top left coordinates are
preserved

• ‘tr’ : Boundary effect occurs at the top right corner of the raster, bottom left coordinates are
preserved

• ‘tl’ : Boundary effect occurs at the top left corner of the raster, bottom right coordinates are
preserved

• ‘bl’ : Boundary effect occurs at the bottom left corner of the raster, top right coordinates are
preserved

80 Chapter 1. API



buzzard Documentation, Release 0.6.5

Returns

np.ndarray

• of dtype=object (Footpr

int) - of shape (M, N)

• with M the line count

• with N the column count

__str__()
Return str(self).

__repr__()
Return repr(self).

__reduce__()
Helper for pickle.

__hash__()
Return hash(self).

forward_conv2d(kernel_size, stride=1, padding=0, dilation=1)
Shift, scale and dilate the Footprint as if it went throught a 2d convolution kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly follow the same
arithmetic.

This function is a many to one mapping, two footprints with different rsizes can produce the same Footprint
when stride > 1.

Parameters

kernel_size: int or (int, int) See torch.nn.Conv2d documentation.

stride: int or (int, int) See torch.nn.Conv2d documentation.

padding: int or (int, int) See torch.nn.Conv2d documentation.

dilation: int or (int, int) See torch.nn.Conv2d documentation.

Returns

Footprint

Example

>>> fp0 = buzz.Footprint(tl=(0, 0), size=(1024, 1024), rsize=(1024, 1024))
... fp1 = fp0.forward_conv2d(kernel_size=2, stride=2)
... print(fp1)
Footprint(tl=(0.5, -0.5), size=(1024, 1024), rsize=(512, 512))

backward_conv2d(kernel_size, stride=1, padding=0, dilation=1)
Shift, scale and dilate the Footprint as if it went backward throught a 2d convolution kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly follow the same
arithmetic.

1.3. Footprint 81



buzzard Documentation, Release 0.6.5

This function is a one to one mapping, two different input footprints will produce two different output Foot-
prints. It means that the backward_conv2d of a forward_conv2d may not reproduce the initial Footprint,
some pixels on the bottom and right edges may be missing.

Parameters

kernel_size: int or (int, int) See torch.nn.Conv2d documentation.

stride: int or (int, int) See torch.nn.Conv2d documentation.

padding: int or (int, int) See torch.nn.Conv2d documentation.

dilation: int or (int, int) See torch.nn.Conv2d documentation.

Returns

Footprint

Example

>>> fp1 = buzz.Footprint(tl=(0.5, -0.5), size=(1024, 1024), rsize=(512, 512))
... fp0 = fp1.backward_conv2d(kernel_size=2, stride=2)
... print(fp0)
Footprint(tl=(0, 0), size=(1024, 1024), rsize=(1024, 1024))

forward_convtranspose2d(kernel_size, stride=1, padding=0, dilation=1, output_padding=0)
Shift, scale and dilate the Footprint as if it went throught a 2d transposed convolution kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly follow the same
arithmetic.

A 2d transposed convolution has 4 internal steps: 1. Apply stride (i.e. interleave the input pixels with
zeroes) 2. Add padding 3. Apply a 2d convolution with stride=1 and pad=0 4. Add output-padding

This function is a one to one mapping, two different input footprints will produce two different output
Footprints.

Parameters

kernel_size: int or (int, int) See torch.nn.ConvTranspose2d documentation.

stride: int or (int, int) See torch.nn.ConvTranspose2d documentation.

padding: int or (int, int) See torch.nn.ConvTranspose2d documentation.

dilation: int or (int, int) See torch.nn.ConvTranspose2d documentation.

output_padding: int or (int, int) See torch.nn.ConvTranspose2d documentation.

82 Chapter 1. API



buzzard Documentation, Release 0.6.5

Returns

Footprint

Example

>>> fp0 = buzz.Footprint(tl=(0, 0), size=(1024, 1024), rsize=(512, 512))
... fp1 = fp0.forward_convtranspose2d(kernel_size=3, stride=2, padding=1)
... print(fp1)
Footprint(tl=(0, 0), size=(1023, 1023), rsize=(1023, 1023))

backward_convtranspose2d(kernel_size, stride=1, padding=0, dilation=1, output_padding=0)
Shift, scale and dilate the Footprint as if it went backward throught a 2d transposed convolution kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly follow the same
arithmetic.

A 2d transposed convolution has 4 internal steps: 1. Apply stride (interleave the input pixels with zeroes)
2. Add padding 3. Apply a 2d convolution stride:1, pad:0 4. Add output-padding

This function is a one to one mapping, two different input Footprints will produce two different output
Footprints.

Parameters

kernel_size: int or (int, int) See torch.nn.ConvTranspose2d documentation.

stride: int or (int, int) See torch.nn.ConvTranspose2d documentation.

padding: int or (int, int) See torch.nn.ConvTranspose2d documentation.

dilation: int or (int, int) See torch.nn.ConvTranspose2d documentation.

output_padding: int or (int, int) See torch.nn.ConvTranspose2d documentation.

Returns

Footprint

Example

>>> fp0 = buzz.Footprint(tl=(0, 0), size=(1023, 1023), rsize=(1023, 1023))
... fp1 = fp0.backward_convtranspose2d(kernel_size=3, stride=2, padding=1)
... print(fp1)
Footprint(tl=(0, 0), size=(1024, 1024), rsize=(512, 512))

1.3. Footprint 83



buzzard Documentation, Release 0.6.5

1.4 Env

class buzzard.Env(**kwargs)
Context manager to update buzzard’s states. Can also be used as a decorator.

Parameters

significant: int Number of significant digits for floating point comparisons Initialized to 9.0 see: https:
//github.com/earthcube-lab/buzzard/wiki/Precision-system see: https://github.com/earthcube-lab/buzzard/
wiki/Floating-Point-Considerations

default_index_dtype: convertible to np.dtype Default numpy return dtype for array indices. Initialized to
np.int32 (signed to allow negative indices by default)

allow_complex_footprint: bool Whether to allow non north-up / west-left Footprints Initialized to False

Examples

>>> import buzzard as buzz
>>> with buzz.Env(default_index_dtype='uint64'):
... ds = buzz.Dataset()
... dsm = ds.aopen_raster('dsm', 'path/to/dsm.tif')
... x, y = dsm.meshgrid_raster
... print(x.dtype)
numpy.uint64

>>> @buzz.Env(allow_complex_footprint=True)
... def main():
... fp = buzz.Footprint(rsize=(10, 10), gt=(100, 1, 0, 100, 0, 1))

__enter__()

__exit__(exc_type=None, exc_val=None, exc_tb=None)

__call__(fn)
Call self as a function.

buzzard.env = <buzzard._env._CurrentEnv object>
Namespace to access current values of buzzard’s environment variable (see buzz.Env)

Example

>>> buzz.env.significant
8.0

84 Chapter 1. API

https://github.com/earthcube-lab/buzzard/wiki/Precision-system
https://github.com/earthcube-lab/buzzard/wiki/Precision-system
https://github.com/earthcube-lab/buzzard/wiki/Floating-Point-Considerations
https://github.com/earthcube-lab/buzzard/wiki/Floating-Point-Considerations


buzzard Documentation, Release 0.6.5

1.5 Misc.

buzzard.open_raster(*args, **kwargs)
Shortcut for Dataset().aopen_raster

>>> help(Dataset.open_raster)

See Also

• Dataset.open_raster()

• Dataset.aopen_raster()

buzzard.create_raster(*args, **kwargs)
Shortcut for Dataset().acreate_raster

>>> help(Dataset.create_raster)

See Also

• Dataset.create_raster()

• Dataset.acreate_raster()

buzzard.wrap_numpy_raster(*args, **kwargs)
Shortcut for Dataset().awrap_numpy_raster

>>> help(Dataset.wrap_numpy_raster)

See Also

• Dataset.wrap_numpy_raster()

• Dataset.awrap_numpy_raster()

buzzard.open_vector(*args, **kwargs)
Shortcut for Dataset().aopen_vector

>>> help(Dataset.open_vector)

See Also

• Dataset.open_vector()

• Dataset.aopen_vector()

buzzard.create_vector(*args, **kwargs)
Shortcut for Dataset().acreate_vector

>>> help(Dataset.create_vector)

1.5. Misc. 85



buzzard Documentation, Release 0.6.5

See Also

• Dataset.create_vector()

• Dataset.acreate_vector()

buzzard.utils.concat_arrays(fp, array_per_fp, _)
Concatenate arrays from array_per_fp to form fp.

This function is meant to be fed to the merge_arrays parameter when constructing a recipe.

86 Chapter 1. API



CHAPTER

TWO

CAVEATS, FAQS AND DESIGN CHOICES

Buzzard has a lot of ambition but is still a young library with several caveats. Are you currently trying to determine if
buzzard is the right choice for your project? We got you covered and listed here the use-cases that are currently poorly
supported. The rest is a bliss!

2.1 Caveat List

2.1.1 Installation

→ buzzard installation is complex because of the GDAL and rtree dependencies.

→ The anaconda package does not exist

2.1.2 Rasters

→ Reading a raster file is currently internally performed by calls to GDAL drivers, and it might be too slow under
certain circumstances. Tweaking the GDAL_CACHEMAX variable may improve performances.

→ On-the-fly reprojections is an ambitious feature of buzzard, but this feature only reaches its full potential with
vectorial data. On-the-fly raster reprojections are currently partially supported. Those only work if the reprojection
preserve angles, if not an exception is raised.

2.1.3 Floating point precision losses

→ The biggest plague of a GIS library is the floating point precision losses. On one hand those losses cannot be
avoided (such as in a reprojection operation), and on the other hand certain operations can only be performed with
noise-free numbers (such as the floor or ceil operations). The only solution is to round those numbers before critical
operations. buzzard has its own way of dealing with this problem: it introduces a global variable to define the number
of significant digits that should be considered as noise-less (9 by default).

This way buzzard tries to catch the errors early and raise exceptions. But despite all those efforts some bugs still occur
when the noise reaches the significant digits, resulting in strange exceptions being raise.

However those bugs only occur when manipulating very small pixels along with very large coordinates, which is not
usual (the ratio coordinate/pixel-size should not exceede 10 ** env.significant).

87



buzzard Documentation, Release 0.6.5

2.1.4 The Footprint class

→ The Footprint class is long to instanciate (~0.5ms), several use cases involving masses of Footprints are impractical
because of this.

→ The Footprint class is the key feature of buzzard, but its specifications are broader that its unit tests: the non-north-
up rasters are not fully unit tested. To instanciate such a Footprint the buzz.env.allow_complex_footprint
should be set to True. However those Footprints should work fine in general

→ The Footprint class lack some higher lever constructors to make several common construction schemes easier.
However by using the intersection method of a Footprint on itself and tweaking the 3 optional parameters covers most
of the missing use-cases.

2.1.5 The async rasters

→ Most of the async rasters as advertised in the doc or the examples are not yet implemented. Only the cached raster
recipes are.

→ Using cached raster recipes has a side effect on a file system. Using a single cache directory from two differ-
ent programs at the same time is an undefined behavior. Although it works fine when the cache files are already
instantiated.

→ The scheduler that was written to support the async rasters is not proven to be bug free. Although it is filled with
assertions that will most likely catch any remaining bug.

2.2 FAQs and design choices

The following list contains the FAQs or features that are often mistaken as bugs ;)

→ Why buzzard instead of fiona or rasterio that are much more mature and straightforward libraries?

The answer is simple: as soon as you are working with large images, or with geometries alongside images, you can
benefit from the higher level abstractions that buzzard provides.

→ Why can’t I simply reproject shapely geometries using buzzard?

Because buzzard does not aim to replace pyproj. When using the classic stack, each of osgeo’s lib has its own wrapper:

• GEOS -> shapely

• OGR -> fiona

• GDAL -> rio

• OSR -> pyproj

Buzzard is transversal, it wraps enough OGR, GDAL and OSR so that you don’t have import those most of the time.
Some known exceptions are:

• Raster reprojection that does not preserve angles

• Shapely objects reprojection

• Contour lines generation

It might be the case that someday buzzard provides a transversal feature that replaces pyproj but nothing is planned.

→ In buzzard, all sources (such as raster and vector files) are tied to a Dataset object. This is design choice has several
advantages now and even more advantages in the long term. See the Dataset’s docstring.

88 Chapter 2. Caveats, FAQs and design choices



buzzard Documentation, Release 0.6.5

→ buzzard is a binding for GDAL, but all the features that allows editing the attributes of an opened file are not
exposed in buzzard. The wish here is to make buzzard as functional as possible.

→ The with Dataset.close as ds: syntax is chosen over the with Dataset as ds: syntax in or-
der to stay consistent with the with Source.close as src: syntax, that itself exist because of the need for
disambiguation with this other feature: with Source.delete as src:.

→ The Footprint class is an immutable object. This is not a bug.

→ Why is the Footprint class not directly implementing a shapely Polygon?

In the early versions of buzzard, it was the case. But method name conflicts became a big problem. And overall, it
was not that useful. You can still use Footprint.poly to convert a Footprint to a shapely Polygon.

→ Why support non-north-up Footprints?

It was harder to design but cleaner in the end. Now that it is (mostly - missing unit tests at the moment) supported
there is a hope that it creates new use cases.

→ Why are the get_data and set_data methods of a raster so complex?

Those methods accept any Footprint as a parameter, it includes Footprints that don’t share align-
ment/scale/rotation/bounds with the raster source. It allows the user to forget about the file when designing a piece of
code. The downside of this feature is that the user is not aware when a resource consuming resampling is performed.
To avoid this problem, the Dataset class is by default configured to raise an error when an interpolation occurs.

→ If you ever wander in the buzzard source code you may notice that the Dataset class holds pointers to Source
objects and vice versa (through dependency injection). This recursive dependency reveal the design choice of making
the Dataset and the Source classes a single class. The Source objects should be seen as extensions of a Dataset object.

→ If you ever wander in the buzzard source code you will notice a complex separation of concern scheme in which a
class is split between a facade and a back class.

This separation exists in order to allow garbage collection to be made, even if the Dataset instantiates a scheduler on
a separate thread. The facade classes are manipulated by the user and have pointers towards the back classes, and the
later have no references to the facade, while the scheduler only have pointers to the back classes. This way, when the
facade are collected, the back are collected too. This separation also allows us to perform parameter checking only
once in the facade classes, and then call the appropriate back implementation using dynamic dispatch.

2.2. FAQs and design choices 89

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Immutable_object
https://en.wikipedia.org/wiki/Dynamic_dispatch


buzzard Documentation, Release 0.6.5

90 Chapter 2. Caveats, FAQs and design choices



CHAPTER

THREE

INDICES AND TABLES:

• genindex

• modindex

• search

91



buzzard Documentation, Release 0.6.5

92 Chapter 3. Indices and tables:



INDEX

Symbols
__contains__() (buzzard.Dataset method), 8
__contains__() (buzzard.PoolsContainer method),

10
__del__() (buzzard.Dataset method), 8
__getitem__() (buzzard.Dataset method), 8
__getitem__() (buzzard.PoolsContainer method), 10
__iter__() (buzzard.PoolsContainer method), 10
__len__() (buzzard.Dataset method), 9
__len__() (buzzard.PoolsContainer method), 10

A
acreate_cached_raster_recipe() (buz-

zard.Dataset method), 20
acreate_raster() (buzzard.Dataset method), 13
acreate_vector() (buzzard.Dataset method), 23
activate_all() (buzzard.Dataset method), 9
active_count() (buzzard.Dataset property), 9
alias() (buzzard.PoolsContainer method), 9
aopen_raster() (buzzard.Dataset method), 12
aopen_vector() (buzzard.Dataset method), 21
awrap_numpy_raster() (buzzard.Dataset method),

14

C
close() (buzzard.Dataset property), 8
concat_arrays() (in module buzzard.utils), 86
create_cached_raster_recipe() (buz-

zard.Dataset method), 18
create_raster() (buzzard.Dataset method), 11
create_raster() (in module buzzard), 85
create_raster_recipe() (buzzard.Dataset

method), 14
create_vector() (buzzard.Dataset method), 21
create_vector() (in module buzzard), 85

D
Dataset (class in buzzard), 3
deactivate_all() (buzzard.Dataset method), 9

E
env (in module buzzard), 84

I
items() (buzzard.Dataset method), 9

K
keys() (buzzard.Dataset method), 9

M
manage() (buzzard.PoolsContainer method), 9

O
open_raster() (buzzard.Dataset method), 10
open_raster() (in module buzzard), 85
open_vector() (buzzard.Dataset method), 20
open_vector() (in module buzzard), 85

P
pools() (buzzard.Dataset property), 9
PoolsContainer (class in buzzard), 9
proj4() (buzzard.Dataset property), 9

V
values() (buzzard.Dataset method), 9

W
wkt() (buzzard.Dataset property), 9
wrap_numpy_raster() (buzzard.Dataset method),

13
wrap_numpy_raster() (in module buzzard), 85

93


	API
	Dataset
	Sources
	Footprint
	Env
	Misc.

	Caveats, FAQs and design choices
	Caveat List
	FAQs and design choices

	Indices and tables:
	Index

