

Welcome to buzzard’s documentation!

In a nutshell, buzzard reads and writes geospatial raster and vector data.

Repository is located here: https://github.com/earthcube-lab/buzzard

[image: buzzard logo]

	API
	Dataset
	Dataset

	Pool Container

	Source Constructors
	Rasters Sources Using GDAL

	Rasters Sources Using NumPy

	Rasters Sources Using Recipes

	Vectors Sources Using GDAL (OGR)

	Sources
	GDALFileRaster

	GDALMemRaster

	NumpyRaster

	CachedRasterRecipe

	GDALFileVector

	GDALMemoryVector

	Footprint

	Env

	Misc.

	Caveats, FAQs and design choices

Indices and tables:

	Index

	Module Index

	Search Page

API

	Dataset
	Dataset

	Pool Container

	Source Constructors
	Rasters Sources Using GDAL

	Rasters Sources Using NumPy

	Rasters Sources Using Recipes

	Vectors Sources Using GDAL (OGR)

	Sources
	GDALFileRaster

	GDALMemRaster

	NumpyRaster

	CachedRasterRecipe

	GDALFileVector

	GDALMemoryVector

	Footprint

	Env

	Misc.

Dataset

Dataset

	
class buzzard.Dataset(sr_work=None, sr_fallback=None, sr_forced=None, analyse_transformation=True, allow_none_geometry=False, allow_interpolation=False, max_active=inf, debug_observers=(), **kwargs)

	Dataset is a class that stores references to sources. A source is either a raster, or a
vector. A Dataset allows:

	quick manipulations by optionally assigning a key to each registered source, (see Sources Registering below)

	closing all source at once by closing the Dataset object.

But also inter-sources operations, like:

	spatial reference harmonization (see On the fly re-projections in buzzard below),

	workload scheduling on pools when using async rasters (see Scheduler below),

	other features in the future (like data visualization).

For actions specific to opened sources, see those classes:

	GDALFileRaster

	GDALMemRaster

	NumpyRaster

	CachedRasterRecipe

	GDALFileVector

	GDALMemoryVector

Warning

This class is not equivalent to the gdal.Dataset class.

Parameters

	sr_work: None or string
	In order to set a spatial reference, use a string that can be converted to WKT by GDAL [https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796].

(see On the fly re-projections in buzzard below)

	sr_fallback: None or string
	In order to set a spatial reference, use a string that can be converted to WKT by GDAL [https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796].

(see On the fly re-projections in buzzard below)

	sr_forced: None or string
	In order to set a spatial reference, use a string that can be converted to WKT by GDAL [https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796].

(see On the fly re-projections in buzzard below)

	analyse_transformation: bool
	Whether or not to perform a basic analysis on two sr to check their compatibility.

if True: Read the buzz.env.significant variable and raise an exception if a spatial
reference conversions is too lossy in precision.

if False: Skip all checks.

(see On the fly re-projections in buzzard below)

	allow_none_geometry: bool
	Whether or not a vector geometry should raise an exception when encountering a None geometry

	allow_interpolation: bool
	Whether or not a raster geometry should raise an exception when remapping with interpolation
is necessary.

	max_active: nbr >= 1
	Maximum number of pooled sources active at the same time.
(see Sources activation / deactivation below)

	debug_observers: sequence of object
	Entry points to observe what is happening in the Dataset’s sheduler.

Examples

>>> import buzzard as buzz

Creating a Dataset.

>>> ds = buzz.Dataset()

Opening a file and registering it under the ‘roofs’ key. There are four ways to the access an
opened source.

>>> r = ds.open_vector('roofs', 'path/to/roofs.shp')
... feature_count = len(ds.roofs)
... feature_count = len(ds['roofs'])
... feature_count = len(ds.get('roofs'))
... feature_count = len(r)

Opening a file anonymously. There is only one way to access the source.

>>> r = ds.aopen_raster('path/to/dem.tif')
... data_type = r.dtype

Opening, reading and closing two raster files with context management.

>>> with ds.open_raster('rgb', 'path/to/rgb.tif').close:
... data_type = ds.rgb.fp
... arr = ds.rgb.get_data()

>>> with ds.aopen_raster('path/to/rgb.tif').close as rgb:
... data_type = rgb.dtype
... arr = rgb.get_data()

Creating two files

>>> ds.create_vector('targets', 'path/to/targets.geojson', 'point', driver='GeoJSON')
... geometry_type = ds.targets.type

>>> with ds.acreate_raster('/tmp/cache.tif', ds.dem.fp, 'float32', 1).delete as cache:
... file_footprint = cache.fp
... cache.set_data(dem.get_data())

Sources Types

	
	Raster sources
	
	GDAL drivers http://www.gdal.org/formats_list.html (e.g. ‘GTIff’, ‘JPEG’, ‘PNG’, …)

	numpy.ndarray

	recipes

	
	Vector sources
	
	OGR drivers: https://www.gdal.org/ogr_formats.html (e.g. ‘ESRI Shapefile’, ‘GeoJSON’, ‘DXF’, …)

Sources Registering

There are always two ways to create a source, with a key or anonymously.

When creating a source using a key, said key (e.g. the string “my_source_name”) must be provided
by user. Each key identify one source and should thus be unique. There are then three ways to
access that source:

	from the object returned by the method that created the source,

	from the Dataset with the attribute syntax: ds.my_source_name,

	from the Dataset with the item syntax: ds[“my_source_name”].

All keys should be unique.

When creating a source anonymously you don’t have to provide a key, but the only way to access
this source is to use the object returned by the method that created the source.

Sources activation / deactivation

The sources that inherit from APooledEmissary (like GDALFileVector and GDALFileRaster) are
flexible about their underlying driver object. Those sources may be temporary deactivated
(useful to limit the number of file descriptors active), or activated multiple time at the
same time (useful to perfom concurrent reads).

Those sources are automatically activated and deactivated given the current needs and
constraints. Setting a max_active lower than np.inf in the Dataset constructor, will
ensure that no more than max_active driver objects are active at the same time, by
deactivating the LRU ones.

On the fly re-projections in buzzard

A Dataset may perform spatial reference conversions on the fly, like a GIS does. Several
modes are available, a set of rules define how each mode work. Those conversions concern both
read operations and write operations, all are performed by the OSR library.

Those conversions are only perfomed on vector’s data/metadata and raster’s Footprints.
This implies that classic raster warping is not included (yet) in those conversions, only raster
shifting/scaling/rotation work.

The z coordinates of vectors geometries are also converted, on the other hand elevations are
not converted in DEM rasters.

If analyse_transformation is set to True (default), all coordinates conversions are
tested against buzz.env.significant on file opening to ensure their feasibility or
raise an exception otherwise. This system is naive and very restrictive, use with caution.
Although, disabling those tests is not recommended, ignoring floating point precision errors
can create unpredictable behaviors at the pixel level deep in your code. Those bugs can be
witnessed when zooming to infinity with tools like qgis or matplotlib.

On the fly re-projections in buzzard - Terminology

	sr
	Spatial reference

	sr_work
	The sr of all interactions with a Dataset (i.e. Footprints, extents, Polygons…),
may be None.

	sr_stored
	The sr that can be found in the metadata of a raster/vector storage, may be None.

	sr_virtual
	The sr considered to be written in the metadata of a raster/vector storage, it is
often the same as sr_stored. When a raster/vector is read, a conversion is performed from
sr_virtual to sr_work. When writing vector data, a conversion is performed from
sr_work to sr_virtual.

	sr_forced
	A sr_virtual provided by user to ignore all sr_stored. This is for example
useful when the sr stored in the input files are corrupted.

	sr_fallback
	A sr_virtual provided by user to be used when sr_stored is missing. This is
for example useful when an input file can’t store a sr (e.g. DFX).

On the fly re-projections in buzzard - Dataset parameters and modes

	mode

	sr_work

	sr_fallback

	sr_forced

	How is the sr_virtual of a source determined

	1

	None

	None

	None

	Use sr_stored, no conversion is performed for the lifetime of this Dataset

	2

	string

	None

	None

	Use sr_stored, if None raises an exception

	3

	string

	string

	None

	Use sr_stored, if None it is considered to be sr_fallback

	4

	string

	None

	string

	Use sr_forced

On the fly re-projections in buzzard - Use cases

	
	If all opened files are known to be written in a same sr in advance, use mode 1.
	No conversions will be performed, this is the safest way to work.

	
	If all opened files are known to be written in the same sr but you wish to work in a different sr, use mode 4.
	The huge benefit of this mode is that the driver specific behaviors
concerning spatial references have no impacts on the data you manipulate.

	
	On the other hand if you don’t have a priori information on files’ sr, mode 2 or mode 3 should be used.
	
Warning

Side note: Since the GeoJSON driver cannot store a sr, it is impossible to open or
create a GeoJSON file in mode 2.

On the fly re-projections in buzzard - Examples

mode 1 - No conversions at all

>>> ds = buzz.Dataset()

mode 2 - Working with WGS84 coordinates

>>> ds = buzz.Dataset(
... sr_work='WGS84',
...)

mode 3 - Working in UTM with DXF files in WGS84 coordinates

>>> ds = buzz.Dataset(
... sr_work='EPSG:32632',
... sr_fallback='WGS84',
...)

mode 4 - Working in UTM with unreliable LCC input files

>>> ds = buzz.Dataset(
... sr_work='EPSG:32632',
... sr_forced='EPSG:27561',
..)

Scheduler

To handle async rasters living in a Dataset, a thread is to manage requests made to those
rasters. It will start as soon as you create an async raster and stop when the Dataset is
closed or collected. If one of your callbacks to be called by the scheduler raises an exception,
the scheduler will stop and the exception will be propagated to the main thread as soon as
possible.

Thread-safety

Thread safety is one of the main concern of buzzard. Everything is thread-safe except:

	The raster write methods

	The vector write methods

	The raster read methods when using the GDAL::MEM driver

	The vector read methods when using the GDAL::Memory driver

	
__del__()

	

	
property close

	Close the Dataset with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

The Dataset can be closed manually or automatically when garbage collected, it is safer
to do it manually.

The internal steps are:

	Stopping the scheduler

	Joining the mp.Pool that have been automatically allocated

	Closing all sources

Examples

>>> ds = buzz.Dataset()
... # code...
... ds.close()

>>> with buzz.Dataset().close as ds
... # code...

Caveat

When using a scheduler, some memory leaks may still occur after closing a Dataset.
Possible origins:

	https://bugs.python.org/issue34172 (update your python to >=3.6.7)

	Gdal cache not flushed (not a leak)

	The gdal version

	https://stackoverflow.com/a/1316799 (not a leak)

	Some unknown leak in the python threading or multiprocessing standard library

	Some unknown library leaking memory on the C side

	Some unknown library storing data in global variables

You can use a debug_observer with an on_object_allocated method to track large objects
allocated in the scheduler. It will likely not be the source of the problem. If you
even find a source of leaks please contact the buzzard team.
https://github.com/earthcube-lab/buzzard/issues

	
__getitem__(key)

	Retrieve a source from its key

	
__contains__(item)

	Is key or source registered in Dataset

	
items()

	Generate the pair of (keys_of_source, source) for all proxies

	
keys()

	Generate all source keys

	
values()

	Generate all proxies

	
__len__()

	Retrieve source count registered within this Dataset

	
property proj4

	Dataset’s work spatial reference in WKT proj4.
Returns None if mode 1.

	
property wkt

	Dataset’s work spatial reference in WKT format.
Returns None if mode 1.

	
property active_count

	Count how many driver objects are currently active

	
activate_all()

	Activate all deactivable proxies.
May raise an exception if the number of sources is greater than max_activated

	
deactivate_all()

	Deactivate all deactivable proxies. Useful to flush all files to disk

	
property pools

	Get the Pool Container.

>>> help(PoolsContainer)

Pool Container

	
class buzzard.PoolsContainer

	Manages thread/process pools and aliases for a Dataset

	
alias(key, pool_or_none)

	Register the given pool under the given key in this Dataset. The key can then be
used to refer to that pool from within the async raster constructors.

Parameters

	key: hashable (like a string)
	

	pool_or_none: multiprocessing.pool.Pool or multiprocessing.pool.ThreadPool or None
	

	
manage(pool)

	Add the given pool to the list of pools that must be terminated upon Dataset closing.

Parameters

	pool: multiprocessing.pool.Pool or multiprocessing.pool.ThreadPool
	

	
__len__()

	Number of pools registered in this Dataset

	
__iter__()

	Generator of pools registered in this Dataset

	
__getitem__(key)

	Pool or none getter from alias

	
__contains__(obj)

	Is pool or alias registered in this Dataset

Source Constructors

	Rasters Sources Using GDAL

	Rasters Sources Using NumPy

	Rasters Sources Using Recipes

	Vectors Sources Using GDAL (OGR)

Rasters Sources Using GDAL

	
Dataset.open_raster(key, path, driver='GTiff', options=(), mode='r')

	Open a raster file within this Dataset under key. Only metadata are kept in memory.

>>> help(GDALFileRaster)

Parameters

	key: hashable (like a string)
	File identifier within Dataset

To avoid using a key, you may use aopen_raster()

	path: string
	

	driver: string
	gdal driver to use when opening the file
http://www.gdal.org/formats_list.html

	options: sequence of str
	options for gdal

	mode: one of {‘r’, ‘w’}
	

Returns

	source: GDALFileRaster
	

Example

>>> ds.open_raster('ortho', '/path/to/ortho.tif')
>>> file_proj4 = ds.ortho.proj4_stored

>>> ds.open_raster('dem', '/path/to/dem.tif', mode='w')
>>> nodata_value = ds.dem.nodata

See Also

	Dataset.aopen_raster(): To skip the key assigment

	buzzard.open_raster(): To skip the key assigment and the explicit Dataset instanciation

	
Dataset.create_raster(key, path, fp, dtype, channel_count, channels_schema=None, driver='GTiff', options=(), sr=None, ow=False, **kwargs)

	Create a raster file and register it under key within this Dataset. Only metadata are
kept in memory.

The raster’s values are initialized with channels_schema[‘nodata’] or 0.

>>> help(GDALFileRaster)
>>> help(GDALMemRaster)

Parameters

	key: hashable (like a string)
	File identifier within Dataset

To avoid using a key, you may use acreate_raster()

	path: string
	Anything that makes sense to GDAL:

	A path to a file

	An empty string when using driver=MEM

	A path or an xml string when using driver=VRT

	fp: Footprint
	Description of the location and size of the raster to create.

	dtype: numpy type (or any alias)
	

	channel_count: integer
	number of channels

	channels_schema: dict or None
	Channel(s) metadata. (see Channels schema fields below)

	driver: string
	gdal driver to use when opening the file
http://www.gdal.org/formats_list.html

	options: sequence of str
	options for gdal
http://www.gdal.org/frmt_gtiff.html

	sr: string or None
	Spatial reference of the new file.

In order not to set a spatial reference, use None.

In order to set a spatial reference, use a string that can be converted to WKT by GDAL [https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796].

	ow: bool
	Overwrite. Whether or not to erase the existing files.

Returns

	source: GDALFileRaster or GDALMemRaster
	The type depends on the driver parameter

Example

>>> ds.create_raster('dem_copy', 'dem_copy.tif', ds.dem.fp, ds.dsm.dtype, len(ds.dem))
>>> array = ds.dem.get_data()
>>> ds.dem_copy.set_data(array)

Channel schema fields

	Fields:
	‘nodata’: None or number
‘interpretation’: None or str
‘offset’: None or number
‘scale’: None or number
‘mask’: None or str

	Interpretation values:
	undefined, grayindex, paletteindex, redband, greenband, blueband, alphaband, hueband,
saturationband, lightnessband, cyanband, magentaband, yellowband, blackband

	Mask values:
	all_valid, per_dataset, alpha, nodata

Additionally:

	A field missing or None is kept to default value.

	A field can be passed as

	a value: All bands are set to this value

	a sequence of values of length channel_count: All bands will be set to their respective state

Caveat

When using the GTiff driver, specifying a mask or interpretation field may lead to unexpected results.

See Also

	Dataset.acreate_raster(): To skip the key assigment

	buzzard.create_raster(): To skip the key assigment and the explicit Dataset instanciation

	
Dataset.aopen_raster(path, driver='GTiff', options=(), mode='r')

	Open a raster file anonymously within this Dataset. Only metadata are kept in memory.

See open_raster()

Example

>>> ortho = ds.aopen_raster('/path/to/ortho.tif')
>>> file_wkt = ortho.wkt_stored

See Also

	Dataset.open_raster(): To assign a key to this source within the Dataset

	buzzard.open_raster(): To skip the explicit Dataset instanciation

	
Dataset.acreate_raster(path, fp, dtype, channel_count, channels_schema=None, driver='GTiff', options=(), sr=None, ow=False, **kwargs)

	Create a raster file anonymously within this Dataset. Only metadata are kept in memory.

See create_raster()

Example

>>> mask = ds.acreate_raster('mask.tif', ds.dem.fp, bool, 1, options=['SPARSE_OK=YES'])
>>> open_options = mask.open_options

>>> channels_schema = {
... 'nodata': -32767,
... 'interpretation': ['blackband', 'cyanband'],
... }
>>> out = ds.acreate_raster('output.tif', ds.dem.fp, 'float32', 2, channels_schema)
>>> band_interpretation = out.channels_schema['interpretation']

See Also

	Dataset.create_raster(): To assign a key to this source within the Dataset

	buzzard.create_raster(): To skip the explicit Dataset instanciation

Rasters Sources Using NumPy

	
Dataset.wrap_numpy_raster(key, fp, array, channels_schema=None, sr=None, mode='w', **kwargs)

	Register a numpy array as a raster under key within this Dataset.

>>> help(NumpyRaster)

Parameters

	key: hashable (like a string)
	File identifier within Dataset

To avoid using a key, you may use awrap_numpy_raster()

	fp: Footprint of shape (Y, X)
	Description of the location and size of the raster to create.

	array: ndarray of shape (Y, X) or (Y, X, C)
	

	channels_schema: dict or None
	Channel(s) metadata. (see Channels schema fields below)

	sr: string or None
	Spatial reference of the new file

In order not to set a spatial reference, use None.

In order to set a spatial reference, use a string that can be converted to WKT by GDAL [https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796].

Returns

	source: NumpyRaster
	

Channel schema fields

	Fields:
	‘nodata’: None or number
‘interpretation’: None or str
‘offset’: None or number
‘scale’: None or number
‘mask’: None or str

	Interpretation values:
	undefined, grayindex, paletteindex, redband, greenband, blueband, alphaband, hueband,
saturationband, lightnessband, cyanband, magentaband, yellowband, blackband

	Mask values:
	all_valid, per_dataset, alpha, nodata

Additionally:

	A field missing or None is kept to default value.

	A field can be passed as

	a value: All bands are set to this value

	a sequence of values of length channel_count: All bands will be set to their respective state

See Also

	Dataset.awrap_numpy_raster(): To skip the key assigment

	buzzard.wrap_numpy_raster(): To skip the key assigment and the explicit Dataset instanciation

	
Dataset.awrap_numpy_raster(fp, array, channels_schema=None, sr=None, mode='w', **kwargs)

	Register a numpy array as a raster anonymously within this Dataset.

See Also

	Dataset.wrap_numpy_raster(): To assign a key to this source within the Dataset

	buzzard.wrap_numpy_raster(): To skip the key assigment and the explicit Dataset instanciation

Rasters Sources Using Recipes

	
Dataset.create_raster_recipe(key, fp, dtype, channel_count, channels_schema=None, sr=None, compute_array=None, merge_arrays=<function concat_arrays>, queue_data_per_primitive=mappingproxy({}), convert_footprint_per_primitive=None, computation_pool='cpu', merge_pool='cpu', resample_pool='cpu', computation_tiles=None, max_computation_size=None, max_resampling_size=None, automatic_remapping=True, debug_observers=())

	
Warning

This method is not yet implemented. It exists for documentation purposes.

Create a raster recipe and register it under key within this Dataset.

A raster recipe implements the same interfaces as all other rasters, but internally it
computes data on the fly by calling a callback. The main goal of the raster recipes is to
provide a boilerplate-free interface that automatize those cumbersome tasks:

	tiling,

	parallelism

	caching

	file reads

	resampling

	lazy evaluation

	backpressure prevention and

	optimised task scheduling.

If you are familiar with create_cached_raster_recipe two parameters are new here:
automatic_remapping and max_computation_size.

Parameters

	key:
	see Dataset.create_raster()

	fp:
	see Dataset.create_raster()

	dtype:
	see Dataset.create_raster()

	channel_count:
	see Dataset.create_raster()

	channels_schema:
	see Dataset.create_raster()

	sr:
	see Dataset.create_raster()

	compute_array: callable
	see Computation Function below

	merge_arrays: callable
	see Merge Function below

	queue_data_per_primitive: dict of hashable (like a string) to a queue_data method pointer
	see Primitives below

	convert_footprint_per_primitive: None or dict of hashable (like a string) to a callable
	see Primitives below

	computation_pool:
	see Pools below

	merge_pool:
	see Pools below

	resample_pool:
	see Pools below

	computation_tiles: None or (int, int) or numpy.ndarray of Footprint
	see Computation Tiling below

	max_computation_size: None or int or (int, int)
	see Computation Tiling below

	max_resampling_size: None or int or (int, int)
	Optionally define a maximum resampling size. If a larger resampling has to be performed,
it will be performed tile by tile in parallel.

	automatic_remapping: bool
	see Automatic Remapping below

	debug_observers: sequence of object
	Entry points that observe what is happening with this raster in the Dataset’s scheduler.

Returns

	source: NocacheRasterRecipe
	

Computation Function

The function that will map a Footprint to a numpy.ndarray. If queue_data_per_primitive
is not empty, it will map a Footprint and primitive arrays to a numpy.ndarray.

It will be called in parallel according to the computation_pool parameter provided at
construction.

The function will be called with the following positional parameters:

	
	fp: Footprint of shape (Y, X)
	The location at which the pixels should be computed

	
	primitive_fps: dict of hashable to Footprint
	For each primitive defined through the queue_data_per_primitive parameter, the input
Footprint.

	
	primitive_arrays: dict of hashable to numpy.ndarray
	For each primitive defined through the queue_data_per_primitive parameter, the input
numpy.ndarray that was automatically computed.

	
	raster: CachedRasterRecipe or None
	The Raster object of the ongoing computation.

It should return either:

	
	a single ndarray of shape (Y, X) if only one channel was computed
	

	
	a single ndarray of shape (Y, X, C) if one or more channels were computed
	

If computation_pool points to a process pool, the compute_array function must be
picklable and the raster parameter will be None.

Computation Tiling

You may sometimes want to have control on the Footprints that are requested to the
compute_array function, for example:

	If pixels computed by compute_array are long to compute, you want to tile to increase
parallelism.

	If the compute_array function scales badly in term of memory or time, you want to tile
to reduce complexity.

	If compute_array can work only on certain Footprints, you want a hard constraint on the
set of Footprint that can be queried from compute_array. (This may happen with
convolutional neural networks)

To do so use the computation_tiles or max_computation_size parameter (not both).

If max_computation_size is provided, a Footprint to be computed will be tiled given this
parameter.

If computation_tiles is a numpy.ndarray of Footprint, it should be a tiling of the fp
parameter. Only the Footprints contained in this tiling will be asked to the
computation_tiles.
If computation_tiles is (int, int), a tiling will be constructed using Footprint.tile
using those two ints.

Merge Function

The function that will map several pairs of Footprint/numpy.ndarray to a single
numpy.ndarray. If the computation_tiles is None, it will never be called.

It will be called in parallel according to the merge_pool parameter provided at
construction.

The function will be called with the following positional parameters:

	
	fp: Footprint of shape (Y, X)
	The location at which the pixels should be computed.

	
	array_per_fp: dict of Footprint to numpy.ndarray
	The pairs of Footprint/numpy.ndarray of each arrays that were computed by
compute_array and that overlap with fp.

	
	raster: CachedRasterRecipe or None
	The Raster object of the ongoing computation.

It should return either:

	
	a single ndarray of shape (Y, X) if only one channel was computed
	

	
	a single ndarray of shape (Y, X, C) if one or more channels were computed
	

If merge_pool points to a process pool, the merge_array function must be picklable and
the raster parameter will be None.

Automatic Remapping

When creating a recipe you give a Footprint through the fp parameter. When calling your
compute_array function the scheduler will only ask for slices of fp. This means that the
scheduler takes care of those boilerplate steps:

	If you request a Footprint on a different grid in a get_data() call, the scheduler
takes care of resampling the outputs of your compute*array function.

	If you request a Footprint partially or fully outside of the raster’s extent, the
scheduler will call your compute_array function to get the interior pixels and then
pad the output with nodata.

This system is flexible and can be deactivated by passing automatic_remapping=False to
the constructor of a NocacheRasterRecipe, in this case the scheduler will call your
compute_array function for any kind of Footprint; thus your function must be able to
comply with any request.

Primitives

The queue_data_per_primitive and convert_footprint_per_primitive parameters can be used
to create dependencies between dependee async rasters and the raster recipe being
created. The dependee/dependent relation is called primitive/derived throughout buzzard.
A derived recipe can itself be the primitive of another raster. Pipelines of any depth and
width can be instanciated that way.

In queue_data_per_primitive you declare a dependee by giving it a key of your choice and
the pointer to the queue_data method of dependee raster. You can parameterize the
connection by currying the channels, dst_nodata, interpolation and max_queue_size
parameters using functools.partial.

The convert_footprint_per_primitive dict should contain the same keys as
queue_data_per_primitive. A value in the dict should be a function that maps a Footprint
to another Footprint. It can be used for example to request larger rectangles of primitives
data to compute a derived array.

e.g. If the primitive raster is an rgb image, and the derived raster only needs the green
channel but with a context of 10 additional pixels on all 4 sides:

>>> derived = ds.create_raster_recipe(
... # <other parameters>
... queue_data_per_primitive={'green': functools.partial(primitive.queue_data, channels=1)},
... convert_footprint_per_primitive={'green': lambda fp: fp.dilate(10)},
...)

Pools

The *_pool parameters can be used to select where certain computations occur. Those
parameters can be of the following types:

	A multiprocessing.pool.ThreadPool, should be the default choice.

	A multiprocessing.pool.Pool, a process pool. Useful for computations that requires the
GIL or that leaks memory.

	None, to request the scheduler thread to perform the tasks itself. Should be used when
the computation is very light.

	A hashable (like a string), that will map to a pool registered in the Dataset. If
that key is missing from the Dataset, a ThreadPool with
multiprocessing.cpu_count() workers will be automatically instanciated. When the
Dataset is closed, the pools instanciated that way will be joined.

See Also

	Dataset.acreate_raster_recipe(): To skip the key assigment

	Dataset.create_raster_recipe(): For results caching

	Dataset.acreate_cached_raster_recipe(): To skip the key assigment

	
Dataset.create_cached_raster_recipe(key, fp, dtype, channel_count, channels_schema=None, sr=None, compute_array=None, merge_arrays=<function concat_arrays>, cache_dir=None, ow=False, queue_data_per_primitive=mappingproxy({}), convert_footprint_per_primitive=None, computation_pool='cpu', merge_pool='cpu', io_pool='io', resample_pool='cpu', cache_tiles=(512, 512), computation_tiles=None, max_resampling_size=None, debug_observers=())

	Create a cached raster recipe and register it under key within this Dataset.

Compared to a NocacheRasterRecipe, in a CachedRasterRecipe the pixels are never computed
twice. Cache files are used to store and reuse pixels from computations. The cache can even
be reused between python sessions.

If you are familiar with create_raster_recipe four parameters are new here: io_pool,
cache_tiles, cache_dir and ow. They are all related to file system operations.

See create_raster_recipe method, since it shares most of the features:

>>> help(CachedRasterRecipe)

Parameters

	key:
	see Dataset.create_raster() method

	fp:
	see Dataset.create_raster() method

	dtype:
	see Dataset.create_raster() method

	channel_count:
	see Dataset.create_raster() method

	channels_schema:
	see Dataset.create_raster() method

	sr:
	see Dataset.create_raster() method

	compute_array:
	see Dataset.create_raster_recipe() method

	merge_arrays:
	see Dataset.create_raster_recipe() method

	cache_dir: str or pathlib.Path
	Path to the directory that holds the cache files associated with this raster. If cache
files are present, they will be reused (or erased if corrupted). If a cache file is
needed and missing, it will be computed.

	ow: bool
	Overwrite. Whether or not to erase the old cache files contained in cache_dir.

Warning

not only the tiles needed (hence computed) but all buzzard cache files in
cache_dir will be deleted.

	queue_data_per_primitive:
	see Dataset.create_raster_recipe() method

	convert_footprint_per_primitive:
	see Dataset.create_raster_recipe() method

	computation_pool:
	see Dataset.create_raster_recipe() method

	merge_pool:
	see Dataset.create_raster_recipe() method

	io_pool:
	see Dataset.create_raster_recipe() method

	resample_pool:
	see Dataset.create_raster_recipe() method

	cache_tiles: (int, int) or numpy.ndarray of Footprint
	A tiling of the fp parameter. Each tile will correspond to one cache file.
if (int, int): Construct the tiling by calling Footprint.tile with this parameter

	computation_tiles:
	if None: Use the same tiling as cache_tiles
else: see create_raster_recipe method

	max_resampling_size: None or int or (int, int)
	see Dataset.create_raster_recipe() method

	debug_observers: sequence of object
	see Dataset.create_raster_recipe() method

Returns

	source: CachedRasterRecipe
	

See Also

	Dataset.create_raster_recipe(): To skip the caching

	Dataset.acreate_cached_raster_recipe(): To skip the key assigment

	
Dataset.acreate_cached_raster_recipe(fp, dtype, channel_count, channels_schema=None, sr=None, compute_array=None, merge_arrays=<function concat_arrays>, cache_dir=None, ow=False, queue_data_per_primitive=mappingproxy({}), convert_footprint_per_primitive=None, computation_pool='cpu', merge_pool='cpu', io_pool='io', resample_pool='cpu', cache_tiles=(512, 512), computation_tiles=None, max_resampling_size=None, debug_observers=())

	Create a cached raster reciped anonymously within this Dataset.

See Dataset.create_cached_raster_recipe

See Also

	Dataset.create_raster_recipe(): To skip the caching

	Dataset.create_cached_raster_recipe(): To assign a key to this source within the Dataset

Vectors Sources Using GDAL (OGR)

	
Dataset.open_vector(key, path, layer=None, driver='ESRI Shapefile', options=(), mode='r')

	Open a vector file within this Dataset under key. Only metadata are kept in memory.

>>> help(GDALFileVector)

Parameters

	key: hashable (like a string)
	File identifier within Dataset

To avoid using a key, you may use aopen_vector()

	path: string
	

	layer: None or int or string
	

	driver: string
	ogr driver to use when opening the file
http://www.gdal.org/ogr_formats.html

	options: sequence of str
	options for ogr

	mode: one of {‘r’, ‘w’}
	

Returns

	source: GDALFileVector
	

Example

>>> ds.open_vector('trees', '/path/to.shp')
>>> feature_count = len(ds.trees)

>>> ds.open_vector('roofs', '/path/to.json', driver='GeoJSON', mode='w')
>>> fields_list = ds.roofs.fields

See Also

	Dataset.aopen_vector(): To skip the key assigment

	buzzard.open_vector(): To skip the key assigment and the explicit Dataset instanciation

	
Dataset.aopen_vector(path, layer=None, driver='ESRI Shapefile', options=(), mode='r')

	Open a vector file anonymously within this Dataset. Only metadata are kept in memory.

See open_vector()

Example

>>> trees = ds.aopen_vector('/path/to.shp')
>>> features_bounds = trees.bounds

See Also

	Dataset.open_vector(): To assign a key to this source within the Dataset

	buzzard.open_vector(): To skip the key assigment and the explicit Dataset instanciation

	
Dataset.create_vector(key, path, type, fields=(), layer=None, driver='ESRI Shapefile', options=(), sr=None, ow=False)

	Create an empty vector file and register it under key within this Dataset. Only metadata
are kept in memory.

>>> help(GDALFileVector)
>>> help(GDALMemoryVector)

Parameters

	key: hashable (like a string)
	File identifier within Dataset

To avoid using a key, you may use acreate_vector()

	path: string
	Anything that makes sense to GDAL:

	A path to a file

	An empty string when using driver=Memory

	type: string
	name of a wkb geometry type, without the wkb prefix.

list: http://www.gdal.org/ogr__core_8h.html#a800236a0d460ef66e687b7b65610f12a

	fields: sequence of dict
	Attributes of fields, one dict per field. (see Field Attributes below)

	layer: None or string
	

	driver: string
	ogr driver to use when opening the file
http://www.gdal.org/ogr_formats.html

	options: sequence of str
	options for ogr

	sr: string or None
	Spatial reference of the new file

In order not to set a spatial reference, use None.

In order to set a spatial reference, use a string that can be converted to WKT by GDAL [https://gdal.org/doxygen/classOGRSpatialReference.html#aec3c6a49533fe457ddc763d699ff8796].

	ow: bool
	Overwrite. Whether or not to erase the existing files.

Returns

	source: GDALFileVector or GDALMemoryVector
	The type depends on the driver parameter

Example

>>> ds.create_vector('lines', '/path/to.shp', 'linestring')
>>> geometry_type = ds.lines.type
>>> ds.lines.insert_data([[0, 0], [1, 1], [1, 2]])

>>> fields = [
 {'name': 'name', 'type': str},
 {'name': 'count', 'type': 'int32'},
 {'name': 'area', 'type': np.float64, 'width': 5, precision: 18},
 {'name': 'when', 'type': np.datetime64},
]
>>> ds.create_vector('zones', '/path/to.shp', 'polygon', fields)
>>> field0_type = ds.zones.fields[0]['type']
>>> ds.zones.insert_data(shapely.geometry.box(10, 10, 15, 15))

Field Attributes

Attributes:

	“name”: string

	“type”: string (see Field Types below)

	“precision”: int

	“width”: int

	“nullable”: bool

	“default”: same as type

An attribute missing or None is kept to default value.

Field Types

	Type

	Type names

	Binary

	“binary”, bytes, np.bytes_, aliases of np.bytes_

	Date

	“date”

	DateTime

	“datetime”, datetime.datetime, np.datetime64, aliases of np.datetime64

	Time

	“time”

	Integer

	“integer” np.int32, aliases of np.int32

	Integer64

	“integer64”, int, np.int64, aliases of np.int64

	Real

	“real”, float, np.float64, aliases of np.float64

	String

	“string”, str, np.str_, aliases of np.str_

	Integer64List

	“integer64list”, “int list”

	IntegerList

	“integerlist”

	RealList

	“reallist”, “float list”

See Also

	Dataset.acreate_vector(): To skip the key assigment

	buzzard.create_vector(): To skip the key assigment and the explicit Dataset instanciation

	
Dataset.acreate_vector(path, type, fields=(), layer=None, driver='ESRI Shapefile', options=(), sr=None, ow=False)

	Create a vector file anonymously within this Dataset. Only metadata are kept in memory.

See create_vector()

Example

>>> lines = ds.acreate_vector('/path/to.shp', 'linestring')
>>> file_proj4 = lines.proj4_stored

See Also

	Dataset.create_vector(): To assign a key to this source within the Dataset

	buzzard.create_vector(): To skip the key assigment and the explicit Dataset instanciation

Sources

All sources in buzzard can only be constructed from the Dataset methods, see Source Constructors

All sources in buzzard inherit from a series of abstract classes:

[image: _images/9c90d22ceb41a55f128334f8a233ab2be242bf48.png]
 [https://user-images.githubusercontent.com/9285880/48417679-a157fc80-e753-11e8-8e3b-50fcc0d87218.png]

	GDALFileRaster

	GDALMemRaster

	NumpyRaster

	CachedRasterRecipe

	GDALFileVector

	GDALMemoryVector

GDALFileRaster

	
class buzzard.ASource(<implementation detail>)

	Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

	Has a stored spatial reference

	Has a virtual spatial reference that is influenced by the Dataset’s opening mode

	Can be closed

	
property wkt_stored

	The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

	
property proj4_stored

	The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

	
property wkt_virtual

	The spatial reference considered to be written in the metadata of a source, in wkt
format.

string or None

	
property proj4_virtual

	The spatial reference considered to be written in the metadata of a source, in proj4
format.

string or None

	
get_keys()

	Get the list of keys under which this source is registered to in the Dataset

	
property close

	Close a source with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:
 # code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:
 # code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:
 # code...

	
__del__()

	

	
class buzzard.ASourceRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters.

Features Defined

	Has a stored Footprint that defines the location of the raster

	Has a Footprint that is influenced by the Dataset’s opening mode

	Has a length that defines how many channels are available

	Has a channels_schema that defines per channel attributes (e.g. nodata)

	Has a dtype (like np.float32)

	Has a get_data method that allows to read pixels in their current state to numpy arrays

	
property fp_stored

	

	
property fp

	

	
property channels_schema

	

	
property dtype

	

	
property nodata

	Accessor for first channel’s nodata value

	
get_nodata(channel=0)

	Accessor for nodata value

	
__len__()

	Return the number of channels

	
get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)

	Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If
nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using
interpolation algorithm. (It fails if the allow_interpolation parameter is set to
False in Dataset (default)). When remapping, the nodata values are not interpolated,
they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning

The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this
piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning

Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

Parameters

	fp: Footprint of shape (Y, X) or None
	If None: return the full source raster

If Footprint: return this window from the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be read

	dst_nodata: nbr or None
	nodata value in output array
If None and raster.nodata is not None: raster.nodata is used
If None and raster.nodata is None: 0 is used

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

Returns

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	
	If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) otherwise.

	If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

	If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C), no matter the size of C.

(see Channels Parameter below)

Channels Parameter

	type

	value

	meaning

	output shape

	NoneType

	None (default)

	All channels

	(Y, X) or (Y, X, C)

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	(Y, X, C)

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(Y, X)

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

	(Y, X, C)

	
class buzzard.AStored(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are stored somewhere
(like RAM or disk).

Features Defined

	Has an opening mode

	
property mode

	Open mode, one of {‘r’, ‘w’}

	
class buzzard.AStoredRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that are stored somewhere
(like RAM or disk).

Features Defined

	Has a set_data method that allows to write pixels to storage

	
set_data(array, fp=None, channels=None, interpolation='cv_area', mask=None, **kwargs)

	Write a rectangle of data to the destination raster. Each channel in array is written to
one channel in raster in the same order as described by the channels parameter. An
optional mask may be provided to only write certain pixels of array.

If fp is not fully within the destination raster, only the overlapping pixels are
written.
If fp is not on the same grid as the destination raster, remapping is automatically
performed using the interpolation algorithm. (It fails if the allow_interpolation
parameter is set to False in Dataset (default)). When interpolating:

	The nodata values are not interpolated, they are correctly spread to the output.

	At most one pixel may be lost at edges due to interpolation. Provide more context in
array to compensate this loss.

	The mask parameter is also interpolated.

The alpha bands are currently resampled like any other band, this behavior may change in
the future.

This method is not thread-safe.

Parameters

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	The values to be written

	fp: Footprint of shape (Y, X) or None
	If None: write the full source raster
If Footprint: write this window to the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be written.

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

	mask: numpy array of shape (Y, X) and dtype bool OR inputs accepted by Footprint.burn_polygons
	

Channels Parameter

	type

	value

	meaning

	NoneType

	None (default)

	All channels

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Raster.

	
fill(value, channels=None, **kwargs)

	Fill raster with value.

This method is not thread-safe.

Parameters

	value: nbr
	

	channels: int or sequence of int (see Channels Parameter below)
	The channels to be written

Channels Parameter

	type

	value

	meaning

	NoneType

	None (default)

	All channels

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Raster.

	
class buzzard.AEmissary(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

	Has a driver (like “GTiff” for GDAL’s geotiff driver)

	Has open_options

	Has a path (if the driver supports it)

	Can be deleted (if the driver supports it)

	
property driver

	Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

	
property open_options

	Get the list of options used for opening

	
property path

	Get the file system path of this source, may be the empty string if not applicable

	
property delete

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
property remove

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
class buzzard.AEmissaryRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that are backed by a driver.

Features Defined

None

	
class buzzard.APooledEmissary(<implementation detail>)

	Base abstract class defining the common behavior of all sources that can deactivate and
reactivate their underlying driver at will.

This is useful to balance the number of active file descriptors.
This is useful to perform concurrent reads if the driver does no support it.

Features Defined

	An activate method to manually open the driver (Mostly useless feature since opening is automatic if necessary)

	A deactivate method to close the driver (Useful to flush data to disk)

	An active_count property

	An active property

	
activate()

	Make sure that at least one driver object is active for this Raster/Vector

	
deactivate()

	Collect all active driver object for this Raster/Vector. If a driver object is currently
being used, will raise an exception.

	
property active_count

	Count how many driver objects are currently active for this Raster/Vector

	
property active

	Is there any driver object currently active for this Raster/Vector

	
class buzzard.APooledEmissaryRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that can deactivate and
reactivate their underlying driver at will.

Features Defined

None

	
class buzzard.GDALFileRaster(<implementation detail>)

	Concrete class defining the behavior of a GDAL raster using a file.

>>> help(Dataset.open_raster)
>>> help(Dataset.create_raster)

Features Defined

None

GDALMemRaster

	
class buzzard.ASource(<implementation detail>)

	Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

	Has a stored spatial reference

	Has a virtual spatial reference that is influenced by the Dataset’s opening mode

	Can be closed

	
property wkt_stored

	The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

	
property proj4_stored

	The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

	
property wkt_virtual

	The spatial reference considered to be written in the metadata of a source, in wkt
format.

string or None

	
property proj4_virtual

	The spatial reference considered to be written in the metadata of a source, in proj4
format.

string or None

	
get_keys()

	Get the list of keys under which this source is registered to in the Dataset

	
property close

	Close a source with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:
 # code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:
 # code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:
 # code...

	
__del__()

	

	
class buzzard.ASourceRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters.

Features Defined

	Has a stored Footprint that defines the location of the raster

	Has a Footprint that is influenced by the Dataset’s opening mode

	Has a length that defines how many channels are available

	Has a channels_schema that defines per channel attributes (e.g. nodata)

	Has a dtype (like np.float32)

	Has a get_data method that allows to read pixels in their current state to numpy arrays

	
property fp_stored

	

	
property fp

	

	
property channels_schema

	

	
property dtype

	

	
property nodata

	Accessor for first channel’s nodata value

	
get_nodata(channel=0)

	Accessor for nodata value

	
__len__()

	Return the number of channels

	
get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)

	Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If
nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using
interpolation algorithm. (It fails if the allow_interpolation parameter is set to
False in Dataset (default)). When remapping, the nodata values are not interpolated,
they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning

The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this
piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning

Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

Parameters

	fp: Footprint of shape (Y, X) or None
	If None: return the full source raster

If Footprint: return this window from the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be read

	dst_nodata: nbr or None
	nodata value in output array
If None and raster.nodata is not None: raster.nodata is used
If None and raster.nodata is None: 0 is used

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

Returns

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	
	If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) otherwise.

	If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

	If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C), no matter the size of C.

(see Channels Parameter below)

Channels Parameter

	type

	value

	meaning

	output shape

	NoneType

	None (default)

	All channels

	(Y, X) or (Y, X, C)

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	(Y, X, C)

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(Y, X)

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

	(Y, X, C)

	
class buzzard.AStored(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are stored somewhere
(like RAM or disk).

Features Defined

	Has an opening mode

	
property mode

	Open mode, one of {‘r’, ‘w’}

	
class buzzard.AStoredRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that are stored somewhere
(like RAM or disk).

Features Defined

	Has a set_data method that allows to write pixels to storage

	
set_data(array, fp=None, channels=None, interpolation='cv_area', mask=None, **kwargs)

	Write a rectangle of data to the destination raster. Each channel in array is written to
one channel in raster in the same order as described by the channels parameter. An
optional mask may be provided to only write certain pixels of array.

If fp is not fully within the destination raster, only the overlapping pixels are
written.
If fp is not on the same grid as the destination raster, remapping is automatically
performed using the interpolation algorithm. (It fails if the allow_interpolation
parameter is set to False in Dataset (default)). When interpolating:

	The nodata values are not interpolated, they are correctly spread to the output.

	At most one pixel may be lost at edges due to interpolation. Provide more context in
array to compensate this loss.

	The mask parameter is also interpolated.

The alpha bands are currently resampled like any other band, this behavior may change in
the future.

This method is not thread-safe.

Parameters

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	The values to be written

	fp: Footprint of shape (Y, X) or None
	If None: write the full source raster
If Footprint: write this window to the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be written.

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

	mask: numpy array of shape (Y, X) and dtype bool OR inputs accepted by Footprint.burn_polygons
	

Channels Parameter

	type

	value

	meaning

	NoneType

	None (default)

	All channels

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Raster.

	
fill(value, channels=None, **kwargs)

	Fill raster with value.

This method is not thread-safe.

Parameters

	value: nbr
	

	channels: int or sequence of int (see Channels Parameter below)
	The channels to be written

Channels Parameter

	type

	value

	meaning

	NoneType

	None (default)

	All channels

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Raster.

	
class buzzard.AEmissary(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

	Has a driver (like “GTiff” for GDAL’s geotiff driver)

	Has open_options

	Has a path (if the driver supports it)

	Can be deleted (if the driver supports it)

	
property driver

	Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

	
property open_options

	Get the list of options used for opening

	
property path

	Get the file system path of this source, may be the empty string if not applicable

	
property delete

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
property remove

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
class buzzard.AEmissaryRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that are backed by a driver.

Features Defined

None

	
class buzzard.GDALMemRaster(<implementation detail>)

	Concrete class defining the behavior of a GDAL raster using the “MEM” driver.

>>> help(Dataset.create_raster)

Features Defined

None

NumpyRaster

	
class buzzard.ASource(<implementation detail>)

	Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

	Has a stored spatial reference

	Has a virtual spatial reference that is influenced by the Dataset’s opening mode

	Can be closed

	
property wkt_stored

	The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

	
property proj4_stored

	The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

	
property wkt_virtual

	The spatial reference considered to be written in the metadata of a source, in wkt
format.

string or None

	
property proj4_virtual

	The spatial reference considered to be written in the metadata of a source, in proj4
format.

string or None

	
get_keys()

	Get the list of keys under which this source is registered to in the Dataset

	
property close

	Close a source with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:
 # code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:
 # code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:
 # code...

	
__del__()

	

	
class buzzard.ASourceRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters.

Features Defined

	Has a stored Footprint that defines the location of the raster

	Has a Footprint that is influenced by the Dataset’s opening mode

	Has a length that defines how many channels are available

	Has a channels_schema that defines per channel attributes (e.g. nodata)

	Has a dtype (like np.float32)

	Has a get_data method that allows to read pixels in their current state to numpy arrays

	
property fp_stored

	

	
property fp

	

	
property channels_schema

	

	
property dtype

	

	
property nodata

	Accessor for first channel’s nodata value

	
get_nodata(channel=0)

	Accessor for nodata value

	
__len__()

	Return the number of channels

	
get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)

	Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If
nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using
interpolation algorithm. (It fails if the allow_interpolation parameter is set to
False in Dataset (default)). When remapping, the nodata values are not interpolated,
they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning

The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this
piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning

Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

Parameters

	fp: Footprint of shape (Y, X) or None
	If None: return the full source raster

If Footprint: return this window from the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be read

	dst_nodata: nbr or None
	nodata value in output array
If None and raster.nodata is not None: raster.nodata is used
If None and raster.nodata is None: 0 is used

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

Returns

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	
	If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) otherwise.

	If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

	If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C), no matter the size of C.

(see Channels Parameter below)

Channels Parameter

	type

	value

	meaning

	output shape

	NoneType

	None (default)

	All channels

	(Y, X) or (Y, X, C)

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	(Y, X, C)

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(Y, X)

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

	(Y, X, C)

	
class buzzard.AStored(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are stored somewhere
(like RAM or disk).

Features Defined

	Has an opening mode

	
property mode

	Open mode, one of {‘r’, ‘w’}

	
class buzzard.AStoredRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that are stored somewhere
(like RAM or disk).

Features Defined

	Has a set_data method that allows to write pixels to storage

	
set_data(array, fp=None, channels=None, interpolation='cv_area', mask=None, **kwargs)

	Write a rectangle of data to the destination raster. Each channel in array is written to
one channel in raster in the same order as described by the channels parameter. An
optional mask may be provided to only write certain pixels of array.

If fp is not fully within the destination raster, only the overlapping pixels are
written.
If fp is not on the same grid as the destination raster, remapping is automatically
performed using the interpolation algorithm. (It fails if the allow_interpolation
parameter is set to False in Dataset (default)). When interpolating:

	The nodata values are not interpolated, they are correctly spread to the output.

	At most one pixel may be lost at edges due to interpolation. Provide more context in
array to compensate this loss.

	The mask parameter is also interpolated.

The alpha bands are currently resampled like any other band, this behavior may change in
the future.

This method is not thread-safe.

Parameters

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	The values to be written

	fp: Footprint of shape (Y, X) or None
	If None: write the full source raster
If Footprint: write this window to the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be written.

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

	mask: numpy array of shape (Y, X) and dtype bool OR inputs accepted by Footprint.burn_polygons
	

Channels Parameter

	type

	value

	meaning

	NoneType

	None (default)

	All channels

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Raster.

	
fill(value, channels=None, **kwargs)

	Fill raster with value.

This method is not thread-safe.

Parameters

	value: nbr
	

	channels: int or sequence of int (see Channels Parameter below)
	The channels to be written

Channels Parameter

	type

	value

	meaning

	NoneType

	None (default)

	All channels

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

Caveat

When using a Raster backed by a driver (like a GDAL driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Raster.

	
class buzzard.NumpyRaster(<implementation detail>)

	Concrete class defining the behavior of a wrapped numpy array

>>> help(Dataset.wrap_numpy_raster)

Features Defined

	Has an array property that points to the numpy array provided at construction.

	
property array

	Returns the Raster’s full input data as a Numpy array

CachedRasterRecipe

	
class buzzard.ASource(<implementation detail>)

	Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

	Has a stored spatial reference

	Has a virtual spatial reference that is influenced by the Dataset’s opening mode

	Can be closed

	
property wkt_stored

	The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

	
property proj4_stored

	The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

	
property wkt_virtual

	The spatial reference considered to be written in the metadata of a source, in wkt
format.

string or None

	
property proj4_virtual

	The spatial reference considered to be written in the metadata of a source, in proj4
format.

string or None

	
get_keys()

	Get the list of keys under which this source is registered to in the Dataset

	
property close

	Close a source with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:
 # code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:
 # code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:
 # code...

	
__del__()

	

	
class buzzard.ASourceRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters.

Features Defined

	Has a stored Footprint that defines the location of the raster

	Has a Footprint that is influenced by the Dataset’s opening mode

	Has a length that defines how many channels are available

	Has a channels_schema that defines per channel attributes (e.g. nodata)

	Has a dtype (like np.float32)

	Has a get_data method that allows to read pixels in their current state to numpy arrays

	
property fp_stored

	

	
property fp

	

	
property channels_schema

	

	
property dtype

	

	
property nodata

	Accessor for first channel’s nodata value

	
get_nodata(channel=0)

	Accessor for nodata value

	
__len__()

	Return the number of channels

	
get_data(fp=None, channels=None, dst_nodata=None, interpolation='cv_area', **kwargs)

	Read a rectangle of data on several channels from the source raster.

If fp is not fully within the source raster, the external pixels are set to nodata. If
nodata is missing, 0 is used.
If fp is not on the same grid as the source raster, remapping is performed using
interpolation algorithm. (It fails if the allow_interpolation parameter is set to
False in Dataset (default)). When remapping, the nodata values are not interpolated,
they are correctly spread to the output.

If dst_nodata is provided, nodata pixels are set to dst_nodata.

Warning

The alpha channels are currently resampled like any other channels, this behavior may
change in the future. To normalize an rgba array after a resampling operation, use this
piece of code:

>>> arr = np.where(arr[..., -1] == 255, arr, 0)

Warning

Bands in GDAL are indexed from 1. Channels in buzzard are indexed from 0.

Parameters

	fp: Footprint of shape (Y, X) or None
	If None: return the full source raster

If Footprint: return this window from the raster

	channels: None or int or slice or sequence of int (see Channels Parameter below)
	The channels to be read

	dst_nodata: nbr or None
	nodata value in output array
If None and raster.nodata is not None: raster.nodata is used
If None and raster.nodata is None: 0 is used

	interpolation: one of {‘cv_area’, ‘cv_nearest’, ‘cv_linear’, ‘cv_cubic’, ‘cv_lanczos4’} or None
	OpenCV method used if intepolation is necessary

Returns

	array: numpy.ndarray of shape (Y, X) or (Y, X, C)
	
	If the channels parameter is -1, the returned array is of shape (Y, X) when C=1, (Y, X, C) otherwise.

	If the channels parameter is an integer >=0, the returned array is of shape (Y, X).

	If the channels parameter is a sequence or a slice, the returned array is always of shape (Y, X, C), no matter the size of C.

(see Channels Parameter below)

Channels Parameter

	type

	value

	meaning

	output shape

	NoneType

	None (default)

	All channels

	(Y, X) or (Y, X, C)

	slice

	slice(None), slice(1), slice(0, 2), slice(2, 0, -1)

	Those channels

	(Y, X, C)

	int

	0, 1, 2, -1, -2, -3

	Channel idx

	(Y, X)

	(int, …)

	[0], [1], [2], [-1], [-2], [-3], [0, 1], [-1, 2, 1]

	Those channels

	(Y, X, C)

	
class buzzard.AAsyncRaster(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that are managed by the
Dataset’s scheduler.

Features Defined

	Has a queue_data, a low level method that can be used to query several arrays at once.

	Has an iter_data, a higher level wrapper of queue_data.

	
queue_data(fps, channels=None, dst_nodata=None, interpolation='cv_area', max_queue_size=5, **kwargs)

	Read several rectangles of data on several channels from the source raster.

Using queue_data instead of multiple calls to get_data allows more parallelism.
The fps parameter should contain a sequence of Footprint that will be mapped to
numpy.ndarray. The first ones will be computed with a higher priority than the later ones.

Calling this method sends an asynchronous message to the Dataset’s scheduler with the
input parameters and a queue. On the input side of the queue, the scheduler will call the
put method with each array requested. On the output side of the queue, the get method
should be called to retrieve the requested arrays.

The output queue will be created with a max queue size of max_queue_size, the scheduler
will be careful to prepare only the arrays that can fit in the output queue. Thanks to this
feature: backpressure can be entirely avoided.

If you wish to cancel your request, loose the reference to the queue and the scheduler will
gracefuly cancel the query.

In general you should use the iter_data method instead of the queue_data one, it is much
safer to use. However you will need to pass the queue_data method of a raster, to create
another raster (a recipe) that depends on the first raster.

see rasters’ get_data documentation, it shares most of the concepts

Parameters

	fps: sequence of Footprint
	The Footprints at which the raster should be sampled.

	channels:
	see get_data method

	dst_nodata:
	see get_data method

	interpolation:
	see get_data method

	max_queue_size: int
	Maximum number of arrays to prepare in advance in the underlying queue.

Returns

	queue: queue.Queue of ndarray
	The arrays are put into the queue in the same order as in the fps parameter.

	
iter_data(fps, channels=None, dst_nodata=None, interpolation='cv_area', max_queue_size=5, **kwargs)

	Read several rectangles of data on several channels from the source raster.

The iter_data method is a higher level wrapper around the queue_data method. It
returns a python generator and while waiting for data, it periodically probes the
Dataset’s scheduler to reraise an exception if it crashed.

If you wish to cancel your request, loose the reference to the iterable and the scheduler
will gracefully cancel the query.

see rasters’ get_data documentation, it shares most of the concepts
see queue_data documentation, it is called from within the iter_data method

Parameters

	fps: sequence of Footprint
	The Footprints at which the raster should be sampled.

	channels:
	see get_data method

	dst_nodata:
	see get_data method

	interpolation:
	see get_data method

	max_queue_size: int
	Maximum number of arrays to prepare in advance in the underlying queue.

Returns

	iterable: iterable of ndarray
	The arrays are yielded into the generator in the same order as in the fps parameter.

	
class buzzard.ARasterRecipe(<implementation detail>)

	Base abstract class defining the common behavior of all rasters that compute data on the fly
through the Dataset’s scheduler.

Features Defined

	Has a primitives property, a dict that lists the primitive rasters declared at construction.

	
property primitives

	dict of primitive name to Source, deduced from the queue_data_per_primitive provided at
construction.

	
class buzzard.CachedRasterRecipe(<implementation detail>)

	Concrete class defining the behavior of a raster computed on the fly and fills a cache to
avoid subsequent computations.

>>> help(Dataset.create_cached_raster_recipe)

	
property cache_tiles

	Cache tiles provided or created at construction

	
property cache_dir

	Cache directory path provided at construction

GDALFileVector

	
class buzzard.ASource(<implementation detail>)

	Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

	Has a stored spatial reference

	Has a virtual spatial reference that is influenced by the Dataset’s opening mode

	Can be closed

	
property wkt_stored

	The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

	
property proj4_stored

	The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

	
property wkt_virtual

	The spatial reference considered to be written in the metadata of a source, in wkt
format.

string or None

	
property proj4_virtual

	The spatial reference considered to be written in the metadata of a source, in proj4
format.

string or None

	
get_keys()

	Get the list of keys under which this source is registered to in the Dataset

	
property close

	Close a source with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:
 # code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:
 # code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:
 # code...

	
__del__()

	

	
class buzzard.ASourceVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors.

Features Defined

	Has a type that defines the type of geometry (like “Polygon”)

	Has fields that define the type of informations that is paired with each geometries

	Has a stored extent that allows to retrieve the current extent of all the geometries

	Has a length that indicates how many geometries this source contains.

	Has several read functions (like iter_data) to retrieve geometries in their current state to shapely objects

	
property type

	Geometry type

	
property fields

	Fields definition

	
property extent

	Get the vector’s extent in work spatial reference. (x then y)

Example

>>> minx, maxx, miny, maxy = ds.roofs.extent

	
property extent_stored

	Get the vector’s extent in stored spatial reference. (minx, miny, maxx, maxy)

	
property bounds

	Get the vector’s bounds in work spatial reference. (min then max)

Example

>>> minx, miny, maxx, maxy = ds.roofs.extent

	
property bounds_stored

	Get the vector’s bounds in stored spatial reference. (min then max)

	
__len__()

	Return the number of features in vector

	
iter_data(fields=None, geom_type='shapely', mask=None, clip=False, slicing=slice(0, None, 1))

	Create an iterator over vector’s features

Parameters

	fields: None or string or -1 or sequence of string/int
	Which fields to include in iteration

	if None, empty sequence or empty string: No fields included

	if -1: All fields included

	if string: Name of fields to include (separated by comma or space)

	if sequence: List of indices / names to include

	geom_type: {‘shapely’, ‘coordinates’}
	Returned geometry type

	mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr)
	Add a spatial filter to iteration, only geometries not disjoint with mask will be included.

	if None: No spatial filter

	if Footprint or shapely polygon: Polygon

	if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

	clip: bool
	Returns intersection of geometries and mask.
Caveat: A clipped geometry might not be of the same type as the original geometry.
e.g: polygon might be clipped to might be converted to one of those:

	polygon

	line

	point

	multipolygon

	multiline

	multipoint

	geometrycollection

	slicing: slice
	Slice of the iteration to return. It is applied after spatial filtering

Yields

	feature: geometry or (geometry,) or (geometry, *fields)
	
	If geom_type is ‘shapely’: geometry is a shapely geometry.

	If geom_type is coordinates: geometry is a nested lists of numpy arrays.

	If fields is not a sequence: feature is geometry or (geometry, *fields), depending on the number of fields to yield.

	If fields is a sequence or a string: feature is (geometry,) or (geometry, *fields). Use fields=[-1] to get a monad containing all fields.

Examples

>>> for polygon, volume, stock_type in ds.stocks.iter_data('volume,type'):
 print('area:{}m**2, volume:{}m**3'.format(polygon.area, volume))

>>> for polygon, in ds.stocks.iter_data([]):
 print('area:{}m**2'.format(polygon.area))

>>> for polygon in ds.stocks.iter_data():
 print('area:{}m**2'.format(polygon.area))

	
get_data(index, fields=- 1, geom_type='shapely', mask=None, clip=False)

	Fetch a single feature in vector. See ASourceVector.iter_data

	
iter_geojson(mask=None, clip=False, slicing=slice(0, None, 1))

	Create an iterator over vector’s features

Parameters

	mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr)
	Add a spatial filter to iteration, only geometries not disjoint with mask will be
included.

	if None: No spatial filter

	if Footprint or shapely polygon: Polygon

	if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

	clip: bool
	Returns intersection of geometries and mask.
Caveat: A clipped geometry might not be of the same type as the original geometry.
e.g: polygon might be clipped to might be converted to one of those:

	polygon

	line

	point

	multipolygon

	multiline

	multipoint

	geometrycollection

	slicing: slice
	Slice of the iteration to return. It is applied after spatial filtering

Returns

iterable of geojson feature (dict)

Example

>>> for geojson in ds.stocks.iter_geojson():
 print('exterior-point-count:{}, volume:{}m**3'.format(
 len(geojson['geometry']['coordinates'][0]),
 geojson['properties']['volume']
))

	
get_geojson(index, mask=None, clip=False)

	Fetch a single feature in vector. See ASourceVector.iter_geojson

	
extent_origin

	Descriptor object to manage deprecation

	
class buzzard.AStored(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are stored somewhere
(like RAM or disk).

Features Defined

	Has an opening mode

	
property mode

	Open mode, one of {‘r’, ‘w’}

	
class buzzard.AStoredVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors that are stored somewhere
(like RAM or disk).

Features Defined

	Has an insert_data method that allows to write geometries to storage

	
insert_data(geom, fields=(), index=- 1)

	Insert a feature in vector.

This method is not thread-safe.

Parameters

	geom: shapely.base.BaseGeometry or nested sequence of coordinates
	

	fields: sequence or dict
	Feature’s fields, missing or None fields are defaulted.

	if empty sequence: Keep all fields defaulted

	if sequence of length len(self.fields): Fields to be set, same order as self.fields

	if dict: Mapping of fields to be set

	index: int
	
	if -1: append feature

	else: insert feature at index (if applicable)

Example

>>> poly = shapely.geometry.box(10, 10, 42, 43)
>>> fields = {'volume': 42.24}
>>> ds.stocks.insert_data(poly, fields)

Caveat

When using a Vector backed by a driver (like an OGR driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Vector.

	
class buzzard.AEmissary(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

	Has a driver (like “GTiff” for GDAL’s geotiff driver)

	Has open_options

	Has a path (if the driver supports it)

	Can be deleted (if the driver supports it)

	
property driver

	Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

	
property open_options

	Get the list of options used for opening

	
property path

	Get the file system path of this source, may be the empty string if not applicable

	
property delete

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
property remove

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
class buzzard.AEmissaryVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors that are backed by a driver.

Features Defined

	Has a layer (if the driver supports it)

	
property layer

	

	
class buzzard.APooledEmissary(<implementation detail>)

	Base abstract class defining the common behavior of all sources that can deactivate and
reactivate their underlying driver at will.

This is useful to balance the number of active file descriptors.
This is useful to perform concurrent reads if the driver does no support it.

Features Defined

	An activate method to manually open the driver (Mostly useless feature since opening is automatic if necessary)

	A deactivate method to close the driver (Useful to flush data to disk)

	An active_count property

	An active property

	
activate()

	Make sure that at least one driver object is active for this Raster/Vector

	
deactivate()

	Collect all active driver object for this Raster/Vector. If a driver object is currently
being used, will raise an exception.

	
property active_count

	Count how many driver objects are currently active for this Raster/Vector

	
property active

	Is there any driver object currently active for this Raster/Vector

	
class buzzard.APooledEmissaryVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors that can deactivate and
reactivate their underlying driver at will.

Features Defined

None

	
class buzzard.GDALFileVector(<implementation detail>)

	Concrete class defining the behavior of a GDAL vector using a file

>>> help(Dataset.open_vector)
>>> help(Dataset.create_vector)

Features Defined

None

GDALMemoryVector

	
class buzzard.ASource(<implementation detail>)

	Base abstract class defining the common behavior of all sources opened in the Dataset.

Features Defined

	Has a stored spatial reference

	Has a virtual spatial reference that is influenced by the Dataset’s opening mode

	Can be closed

	
property wkt_stored

	The spatial reference that can be found in the metadata of a source, in wkt format.

string or None

	
property proj4_stored

	The spatial reference that can be found in the metadata of a source, in proj4 format.

string or None

	
property wkt_virtual

	The spatial reference considered to be written in the metadata of a source, in wkt
format.

string or None

	
property proj4_virtual

	The spatial reference considered to be written in the metadata of a source, in proj4
format.

string or None

	
get_keys()

	Get the list of keys under which this source is registered to in the Dataset

	
property close

	Close a source with a call or a context management.
The close attribute returns an object that can be both called and used in a with statement

Examples

>>> ds.dem.close()
>>> with ds.dem.close:
 # code...
>>> with ds.acreate_raster('result.tif', fp, float, 1).close as result:
 # code...
>>> with ds.acreate_vector('results.shp', 'linestring').close as roofs:
 # code...

	
__del__()

	

	
class buzzard.ASourceVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors.

Features Defined

	Has a type that defines the type of geometry (like “Polygon”)

	Has fields that define the type of informations that is paired with each geometries

	Has a stored extent that allows to retrieve the current extent of all the geometries

	Has a length that indicates how many geometries this source contains.

	Has several read functions (like iter_data) to retrieve geometries in their current state to shapely objects

	
property type

	Geometry type

	
property fields

	Fields definition

	
property extent

	Get the vector’s extent in work spatial reference. (x then y)

Example

>>> minx, maxx, miny, maxy = ds.roofs.extent

	
property extent_stored

	Get the vector’s extent in stored spatial reference. (minx, miny, maxx, maxy)

	
property bounds

	Get the vector’s bounds in work spatial reference. (min then max)

Example

>>> minx, miny, maxx, maxy = ds.roofs.extent

	
property bounds_stored

	Get the vector’s bounds in stored spatial reference. (min then max)

	
__len__()

	Return the number of features in vector

	
iter_data(fields=None, geom_type='shapely', mask=None, clip=False, slicing=slice(0, None, 1))

	Create an iterator over vector’s features

Parameters

	fields: None or string or -1 or sequence of string/int
	Which fields to include in iteration

	if None, empty sequence or empty string: No fields included

	if -1: All fields included

	if string: Name of fields to include (separated by comma or space)

	if sequence: List of indices / names to include

	geom_type: {‘shapely’, ‘coordinates’}
	Returned geometry type

	mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr)
	Add a spatial filter to iteration, only geometries not disjoint with mask will be included.

	if None: No spatial filter

	if Footprint or shapely polygon: Polygon

	if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

	clip: bool
	Returns intersection of geometries and mask.
Caveat: A clipped geometry might not be of the same type as the original geometry.
e.g: polygon might be clipped to might be converted to one of those:

	polygon

	line

	point

	multipolygon

	multiline

	multipoint

	geometrycollection

	slicing: slice
	Slice of the iteration to return. It is applied after spatial filtering

Yields

	feature: geometry or (geometry,) or (geometry, *fields)
	
	If geom_type is ‘shapely’: geometry is a shapely geometry.

	If geom_type is coordinates: geometry is a nested lists of numpy arrays.

	If fields is not a sequence: feature is geometry or (geometry, *fields), depending on the number of fields to yield.

	If fields is a sequence or a string: feature is (geometry,) or (geometry, *fields). Use fields=[-1] to get a monad containing all fields.

Examples

>>> for polygon, volume, stock_type in ds.stocks.iter_data('volume,type'):
 print('area:{}m**2, volume:{}m**3'.format(polygon.area, volume))

>>> for polygon, in ds.stocks.iter_data([]):
 print('area:{}m**2'.format(polygon.area))

>>> for polygon in ds.stocks.iter_data():
 print('area:{}m**2'.format(polygon.area))

	
get_data(index, fields=- 1, geom_type='shapely', mask=None, clip=False)

	Fetch a single feature in vector. See ASourceVector.iter_data

	
iter_geojson(mask=None, clip=False, slicing=slice(0, None, 1))

	Create an iterator over vector’s features

Parameters

	mask: None or Footprint or shapely geometry or (nbr, nbr, nbr, nbr)
	Add a spatial filter to iteration, only geometries not disjoint with mask will be
included.

	if None: No spatial filter

	if Footprint or shapely polygon: Polygon

	if (nbr, nbr, nbr, nbr): Extent (minx, maxx, miny, maxy)

	clip: bool
	Returns intersection of geometries and mask.
Caveat: A clipped geometry might not be of the same type as the original geometry.
e.g: polygon might be clipped to might be converted to one of those:

	polygon

	line

	point

	multipolygon

	multiline

	multipoint

	geometrycollection

	slicing: slice
	Slice of the iteration to return. It is applied after spatial filtering

Returns

iterable of geojson feature (dict)

Example

>>> for geojson in ds.stocks.iter_geojson():
 print('exterior-point-count:{}, volume:{}m**3'.format(
 len(geojson['geometry']['coordinates'][0]),
 geojson['properties']['volume']
))

	
get_geojson(index, mask=None, clip=False)

	Fetch a single feature in vector. See ASourceVector.iter_geojson

	
extent_origin

	Descriptor object to manage deprecation

	
class buzzard.AStored(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are stored somewhere
(like RAM or disk).

Features Defined

	Has an opening mode

	
property mode

	Open mode, one of {‘r’, ‘w’}

	
class buzzard.AStoredVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors that are stored somewhere
(like RAM or disk).

Features Defined

	Has an insert_data method that allows to write geometries to storage

	
insert_data(geom, fields=(), index=- 1)

	Insert a feature in vector.

This method is not thread-safe.

Parameters

	geom: shapely.base.BaseGeometry or nested sequence of coordinates
	

	fields: sequence or dict
	Feature’s fields, missing or None fields are defaulted.

	if empty sequence: Keep all fields defaulted

	if sequence of length len(self.fields): Fields to be set, same order as self.fields

	if dict: Mapping of fields to be set

	index: int
	
	if -1: append feature

	else: insert feature at index (if applicable)

Example

>>> poly = shapely.geometry.box(10, 10, 42, 43)
>>> fields = {'volume': 42.24}
>>> ds.stocks.insert_data(poly, fields)

Caveat

When using a Vector backed by a driver (like an OGR driver), the data might be flushed to
disk only after the garbage collection of the driver object. To be absolutely sure that the
driver cache is flushed to disk, call .close or .deactivate on this Vector.

	
class buzzard.AEmissary(<implementation detail>)

	Base abstract class defining the common behavior of all sources that are backed by a driver.

Features Defined

	Has a driver (like “GTiff” for GDAL’s geotiff driver)

	Has open_options

	Has a path (if the driver supports it)

	Can be deleted (if the driver supports it)

	
property driver

	Get the driver name, such as ‘GTiff’ or ‘GeoJSON’

	
property open_options

	Get the list of options used for opening

	
property path

	Get the file system path of this source, may be the empty string if not applicable

	
property delete

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
property remove

	Delete a source with a call or a context management. May raise an exception if not
applicable or if mode = ‘r’
The delete attribute returns an object that can be both called and used in a with statement

Example

>>> ds.dem.delete()
>>> with ds.dem.delete:
 # code...
>>> with ds.acreate_raster('/tmp/tmp.tif', fp, float, 1).delete as tmp:
 # code...
>>> with ds.acreate_vector('/tmp/tmp.shp', 'polygon').delete as tmp:
 # code...

	
class buzzard.AEmissaryVector(<implementation detail>)

	Base abstract class defining the common behavior of all vectors that are backed by a driver.

Features Defined

	Has a layer (if the driver supports it)

	
property layer

	

	
class buzzard.GDALMemoryVector(<implementation detail>)

	Concrete class defining the behavior of a GDAL raster using the “Memory” driver

>>> help(Dataset.create_vector)

Features Defined

None

Footprint

	
class buzzard.Footprint(**kwargs)

	Immutable object representing the location and size of a spatially localized raster. All
methods are thread-safe.

The Footprint class:

	is a toolbox class designed to position a rectangle in both image space and geometry space,

	can be seen as a shapely.geometry.Polygon rectangle that also defines a grid of pixels,

	its main purpose is to simplify the manipulation of windows in rasters,

	has many accessors,

	has many algorithms,

	is a constant object,

	is designed to work with any rectangle in space (like non north-up/west-left rasters),

	is independent from projections, units and files,

	uses affine library internally for conversions (https://github.com/sgillies/affine).

Warning

This class being complex and full python, the constructor is too slow for certain use cases (~0.5ms).

	Method category

	Method names

	Footprint
construction

	from scratch

	__init__, of_extent

	from Footprint

	__and__, intersection, erode, dilate, …

	Conversion

	extent, coords, geom, __geo_interface__

	Accessors

	Spatial - Size and vectors

	size, width, height, diagvec, …

	Spatial - Coordinates

	tl, bl, br, tr, …

	Spatial - Misc

	area, length, semiminoraxis, …

	Raster - Size

	rsize, rwidth, rheight, …

	Raster - Indices

	rtl, rbl, rbr, ttr, …

	Raster - Misc

	rarea, rlength, rsemiminoraxis, …

	Affine transformations

	pxsize, pxvec, angle, …

	Binary predicates

	__eq__, …

	Numpy

	shape, meshgrid_raster, meshgrid_spatial, slice_in, …

	Coordinates conversions

	spatial_to_raster, raster_to_spatial

	Geometry / Raster conversions

	find_polygons, burn_polygons, …

	Tiling

	tile, tile_count, tile_occurrence

	Serialization

	__str__, …

Informations on geo transforms (gt) and affine matrices

	http://www.perrygeo.com/python-affine-transforms.html

	https://pypi.python.org/pypi/affine/1.0

GDAL ordering:

	c

	a

	b

	f

	d

	e

	tlx

	width of a pixel

	row rotation

	tly

	column rotation

	height of a pixel

>>> c, a, b, f, d, e = fp.gt
>>> tlx, dx, rx, tly, ry, dy = fp.gt

Matrix ordering:

	a

	b

	c

	d

	e

	f

	width of a pixel

	row rotation

	tlx

	column rotation

	height of a pixel

	tly

>>> a, b, c, d, e, f = fp.aff6
>>> dx, rx, tlx, ry, dy, tly = fp.aff6

There are only two ways to construct a Footprint, but several high level constructors
exist, such as .intersection.

Usage 1

>>> buzz.Footprint(tl=(0, 10), size=(10, 10), rsize=(100, 100))

Usage 2

>>> buzz.Footprint(gt=(0, .1, 0, 10, 0, -.1), rsize=(100, 100))

Parameters

	tl: (nbr, nbr)
	raster spatial top left coordinates

	gt: (nbr, nbr, nbr, nbr, nbr, nbr)
	geotransforms with GDAL ordering

	size: (nbr, nbr)
	Size of Footprint in space (unsigned)

	rsize: (int, int)
	Size of raster in pixel (unsigned integers)

	
__and__(other)

	Returns Footprint.intersection

	
classmethod of_extent(extent, scale)

	Create a Footprint from a rectangle extent and a scale

Parameters

	extent: (nbr, nbr, nbr, nbr)
	Spatial coordinates of (minx, maxx, miny, maxy) defining a rectangle

	scale: nbr or (nbr, nbr)
	Resolution of output Footprint:

	if nbr: resolution = [a, -a]

	if (nbr, nbr): resolution [a, b]

	
clip(startx, starty, endx, endy)

	Construct a new Footprint by clipping self using pixel indices

To clip using coordinates see Footprint.intersection.

Parameters

	startx: int or None
	Same rules as regular python slicing

	starty: int or None
	Same rules as regular python slicing

	endx: int or None
	Same rules as regular python slicing

	endy: int or None
	Same rules as regular python slicing

Returns

	fp: Footprint
	The new clipped Footprint

	
erode(self, inward_count, /)

	erode(self, inward_count_x, inward_count_y, /)
erode(self, inward_count_left, inward_count_right, inward_count_top, inward_count_bottom, /)

Erode self’s edges by the given pixel count to construct a new Footprint.

A negative erosion is a dilation.

Parameters

	*args: int or (int, int) or (int, int, int, int)
	When int, erode all 4 directions by that much pixels
When (int, int), erode x and y by a different number of pixel
When (int, int, int, int), erode all 4 directions with a different number of pixel

Returns

Footprint

	
dilate(self, outward_count, /)

	dilate(self, outward_count_x, outward_count_y, /)
dilate(self, outward_count_left, outward_count_right, outward_count_top, outward_count_bottom, /)

Dilate self’s edges by the given pixel count to construct a new Footprint.

A negative dilation is an erosion.

Parameters

	*args: int or (int, int) or (int, int, int, int)
	When int, dilate all 4 directions by that much pixels
When (int, int), dilate x and y by a different number of pixel
When (int, int, int, int), dilate all 4 directions with a different number of pixel

Returns

Footprint

	
intersection(self, *objects, scale='self', rotation='auto', alignment='auto', homogeneous=False)

	Construct a Footprint bounding the intersection of geometric objects, self being one of the
of input geometry. Inputs’ intersection is always within output Footprint.

Parameters

	*objects: *object
	Any object with a __geo_interface__ attribute defining a geometry, like a Footprint
or a shapely object.

	scale: one of {‘self’, ‘highest’, ‘lowest’} or (nbr, nbr) or nbr
	‘self’: Output Footprint’s resolution is the same as self
‘highest’: Output Footprint’s resolution is the highest one among the input Footprints
‘lowest’: Output Footprint’s resolution is the lowest one among the input Footprints
(nbr, nbr): Signed pixel size, aka scale
nbr: Signed pixel width. Signed pixel height is assumed to be -width

	rotation: one of {‘auto’, ‘fit’} or nbr
	
	‘auto’
	If scale designate a Footprint object, its rotation is chosen
Else, self’s rotation is chosen

	‘fit’
	Output Footprint is the rotated minimum bounding rectangle

	nbr
	Angle in degree

	alignment: {‘auto’, ‘tl’, (nbr, nbr)}
	
	‘auto’
	
	If scale and rotation designate the same Footprint object, its alignment
	is chosen

Else, ‘tl’ alignment is chosen

	‘tl’: Ouput Footprint’s alignement is the top left most point of the bounding rectangle
	of the intersection

	(nbr, nbr): Coordinate of a point that lie on the grid.
	This point can be anywhere in space.

	homogeneous: bool
	False: No effect
True: Raise an exception if all input Footprints do not lie on the same grid as self.

Returns

Footprint

	
move(tl, tr=None, br=None, round_coordinates=False)

	Create a copy of self moved by an Affine transformation by providing new points.
rsize is always conserved

Usage cases

	tl

	tr

	br

	Affine transformations possible

	coord

	None

	None

	Translation

	coord

	coord

	None

	Translation, Rotation, Scale x and y uniformly with positive real

	coord

	coord

	coord

	Translation, Rotation, Scale x and y independently with reals

Parameters

	tl: (nbr, nbr)
	New top left coordinates

	tr: (nbr, nbr)
	New top right coordinates

	br: (nbr, nbr)
	New bottom right coordinates

	round_coordinates: bool
	Round the input coordinates with respect to buzz.env.significant, so that the output
Footprint is as much similar as possible as the input Footprint regarding those
properties:
- angle
- pxsize
- pxsizex / pxsizey

This option helps a lot if the input coordinates suffered from floating point
precision loss since it will cancel the noise in the resulting transformation matrix.

Warning

Only work when tr and br are both provided

Returns

Footprint

	
property extent

	Get the Footprint’s extent (x then y)

Example

>>> minx, maxx, miny, maxy = fp.extent
>>> plt.imshow(arr, extent=fp.extent)

fp.extent from fp.bounds using numpy fancy indexing

>>> minx, maxx, miny, maxy = fp.bounds[[0, 2, 1, 3]]

	
property bounds

	Get the Footprint’s bounds (min then max)

Example

>>> minx, miny, maxx, maxy = fp.bounds

fp.bounds from fp.extent using numpy fancy indexing

>>> minx, miny, maxx, maxy = fp.extent[[0, 2, 1, 3]]

	
property coords

	Get corners coordinates

Example

>>> tl, bl, br, tr = fp.coords

	
property poly

	Convert self to shapely.geometry.Polygon

	
property __geo_interface__

	

	
property size

	(||raster left - raster right||, ||raster top - raster bottom||)

	Type

	Spatial distances

	
property sizex

	||raster left - raster right||

	Type

	Spatial distance

	
property sizey

	||raster top - raster bottom||

	Type

	Spatial distance

	
property width

	||raster left - raster right||, alias for sizex

	Type

	Spatial distance

	
property height

	||raster top - raster bottom||, alias for sizey

	Type

	Spatial distance

	
property w

	||raster left - raster right||, alias for sizex

	Type

	Spatial distance

	
property h

	||raster top - raster bottom||, alias for sizey

	Type

	Spatial distance

	
property lrvec

	(raster right - raster left)

	Type

	Spatial vector

	
property tbvec

	(raster bottom - raster top)

	Type

	Spatial vector

	
property diagvec

	(raster bottom right - raster top left)

	Type

	Spatial vector

	
property tl

	raster top left (x, y)

	Type

	Spatial coordinates

	
property tlx

	raster top left (x)

	Type

	Spatial coordinate

	
property tly

	raster top left (y)

	Type

	Spatial coordinate

	
property bl

	raster bottom left (x, y)

	Type

	Spatial coordinates

	
property blx

	raster bottom left (x)

	Type

	Spatial coordinate

	
property bly

	raster bottom left (y)

	Type

	Spatial coordinate

	
property br

	raster bottom right (x, y)

	Type

	Spatial coordinates

	
property brx

	raster bottom right (x)

	Type

	Spatial coordinate

	
property bry

	raster bottom right (y)

	Type

	Spatial coordinate

	
property tr

	raster top right (x, y)

	Type

	Spatial coordinates

	
property trx

	raster top right (x)

	Type

	Spatial coordinate

	
property try_

	raster top right (y)
Don’t forget the trailing underscore

	Type

	Spatial coordinate

	
property t

	raster top center (x, y)

	Type

	Spatial coordinates

	
property tx

	raster top center (x)

	Type

	Spatial coordinate

	
property ty

	raster top center (y)

	Type

	Spatial coordinate

	
property l

	raster center left (x, y)

	Type

	Spatial coordinates

	
property lx

	raster center left (x)

	Type

	Spatial coordinate

	
property ly

	raster center left (y)

	Type

	Spatial coordinate

	
property b

	raster bottom center (x, y)

	Type

	Spatial coordinates

	
property bx

	raster bottom center (x)

	Type

	Spatial coordinate

	
property by

	raster bottom center (y)

	Type

	Spatial coordinate

	
property r

	raster center right (x, y)

	Type

	Spatial coordinates

	
property rx

	raster center right (x)

	Type

	Spatial coordinate

	
property ry

	raster center right (y)

	Type

	Spatial coordinate

	
property c

	raster center (x, y)

	Type

	Spatial coordinates

	
property cx

	raster center (x)

	Type

	Spatial coordinate

	
property cy

	raster center (y)

	Type

	Spatial coordinate

	
property semiminoraxis

	half-size of the smaller side

	Type

	Spatial distance

	
property semimajoraxis

	half-size of the bigger side

	Type

	Spatial distance

	
property area

	pixel count

	Type

	Area

	
property length

	circumference of the outer ring

	Type

	Length

	
property rsize

	(pixel per line, pixel per column)

	Type

	Pixel quantities

	
property rsizex

	pixel per line

	Type

	Pixel quantity

	
property rsizey

	pixel per column

	Type

	Pixel quantity

	
property rwidth

	pixel per line, alias for rsizex

	Type

	Pixel quantity

	
property rheight

	pixel per column, alias for rsizey

	Type

	Pixel quantity

	
property rw

	pixel per line, alias for rsizex

	Type

	Pixel quantity

	
property rh

	pixel per column, alias for rsizey

	Type

	Pixel quantity

	
property rtl

	raster top left pixel (x=0, y=0)

	Type

	Indices

	
property rtlx

	raster top left pixel (x=0)

	Type

	Index

	
property rtly

	raster top left pixel (y=0)

	Type

	Index

	
property rbl

	raster bottom left pixel (x=0, y)

	Type

	Indices

	
property rblx

	raster bottom left pixel (x=0)

	Type

	Index

	
property rbly

	raster bottom left pixel (y)

	Type

	Index

	
property rbr

	raster bottom right pixel (x, y)

	Type

	Indices

	
property rbrx

	raster bottom right pixel (x)

	Type

	Index

	
property rbry

	raster bottom right pixel (y)

	Type

	Index

	
property rtr

	raster top right pixel (x, y=0)

	Type

	Indices

	
property rtrx

	raster top right pixel (x)

	Type

	Index

	
property rtry

	raster top right pixel (y=0)

	Type

	Index

	
property rt

	raster top center pixel (x truncated, y=0)

	Type

	Indices

	
property rtx

	raster top center pixel (x truncated)

	Type

	Index

	
property rty

	raster top center pixel (y=0)

	Type

	Index

	
property rl

	raster center left pixel (x=0, y truncated)

	Type

	Indices

	
property rlx

	raster center left pixel (x=0)

	Type

	Index

	
property rly

	raster center left pixel (y truncated)

	Type

	Index

	
property rb

	raster bottom center pixel (x truncated, y)

	Type

	Indices

	
property rbx

	raster bottom center pixel (x truncated)

	Type

	Index

	
property rby

	raster bottom center pixel (y)

	Type

	Index

	
property rr

	raster center right pixel (x, y truncated)

	Type

	Indices

	
property rrx

	raster center right pixel (x)

	Type

	Index

	
property rry

	raster center right pixel (y truncated)

	Type

	Index

	
property rc

	raster center pixel (x truncated, y truncated)

	Type

	Indices

	
property rcx

	raster center pixel (x truncated)

	Type

	Index

	
property rcy

	raster center pixel (y truncated)

	Type

	Index

	
property rsemiminoraxis

	half pixel count (truncated) of the smaller side

	Type

	Pixel quantity

	
property rsemimajoraxis

	half pixel count (truncated) of the bigger side

	Type

	Pixel quantity

	
property rarea

	pixel count

	Type

	Pixel quantity

	
property rlength

	pixel count in the outer ring

	Type

	Pixel quantity

	
property gt

	First 6 numbers of the affine transformation matrix, GDAL ordering

	
property aff33

	The affine transformation matrix

	
property aff23

	Top two rows of the affine transformation matrix

	
property aff6

	First 6 numbers of the affine transformation matrix, left-right/top-bottom ordering

	
property affine

	Underlying affine object

	
property scale

	scale used in the affine transformation, np.abs(scale) == pxsize

	Type

	Spatial vector

	
property angle

	rotation used in the affine transformation, (0 is north-up)

	Type

	Angle in degree

	
property pxsize

	||pixel bottom right - pixel top left|| (x, y)

	Type

	Spatial distance

	
property pxsizex

	||pixel right - pixel left|| (x)

	Type

	Spatial distance

	
property pxsizey

	||pixel bottom - pixel top|| (y)

	Type

	Spatial distance

	
property pxvec

	(pixel bottom right - pixel top left)

	Type

	Spatial vector

	
property pxtbvec

	(pixel bottom left - pixel top left)

	Type

	Spatial vector

	
property pxlrvec

	(pixel top right - pixel top left)

	Type

	Spatial vector

	
__eq__(other)

	Returns self.equals

	
__ne__(other)

	Returns not self.equals

	
share_area(other)

	Binary predicate: Does other share area with self

Parameters

	other: Footprint or shapely object
	

Returns

bool

	
equals(other)

	Binary predicate: Is other Footprint exactly equal to self

Parameters

	other: Footprint
	

Returns

bool

	
almost_equals(other)

	Binary predicate: Is other Footprint almost equal to self with regard to
buzz.env.significant.

Parameters

	other: Footprint
	

Returns

bool

	
same_grid(other)

	Binary predicate: Does other Footprint lie on the same grid as self

Parameters

	other: Footprint
	

Returns

bool

	
property shape

	(pixel per column, pixel per line)

	Type

	Pixel quantities

	
property meshgrid_raster

	Compute indice matrices

Returns

	(x, y): (np.ndarray, np.ndarray)
	Raster indices matrices
with shape = self.shape
with dtype = env.default_index_dtype

	
property meshgrid_spatial

	Compute coordinate matrices

Returns

	(x, y): (np.ndarray, np.ndarray)
	Spatial coordinate matrices
with shape = self.shape
with dtype = float32

	
meshgrid_raster_in(other, dtype=None, op=<ufunc 'floor'>)

	Compute raster coordinate matrices of self in other referential

Parameters

	other: Footprint
	

	dtype: None or convertible to np.dtype
	Output dtype
If None: Use buzz.env.default_index_dtype

	op: None or function operating on a vector
	Function to apply before casting output to dtype
If None: Do not transform data before casting

Returns

	(x, y): (np.ndarray, np.ndarray)
	Raster coordinate matrices
with shape = self.shape
with dtype = dtype

	
slice_in(other, clip=False)

	Compute location of self inside other with slice objects.
If other and self do not have the same rotation, operation is undefined

Parameters

	other: Footprint
	

	clip: bool
	
	False
	Does nothing

	True
	Clip the slices to other bounds. If other and self do not share area,
at least one of the returned slice will have slice.start == slice.stop

Returns

(yslice, xslice): (slice, slice)

Example

Burn small into big if small is within big
>>> big_data[small.slice_in(big)] = small_data

Burn small into big where overlapping
>>> big_data[small.slice_in(big, clip=True)] = small_data[big.slice_in(small, clip=True)]

	
spatial_to_raster(xy, dtype=None, op=<ufunc 'floor'>)

	Convert xy spatial coordinates to raster xy indices

Parameters

	xy: sequence of numbers of shape (…, 2)
	Spatial coordinates

	dtype: None or convertible to np.dtype
	Output dtype
If None: Use buzz.env.default_index_dtype

	op: None or vectorized function
	Function to apply before casting output to dtype
If None: Do not transform data before casting

Returns

	out_xy: np.ndarray
	Raster indices
with shape = np.asarray(xy).shape
with dtype = dtype

Prototype inspired from
https://mapbox.github.io/rasterio/api/rasterio.io.html#rasterio.io.TransformMethodsMixin.index

	
raster_to_spatial(xy)

	Convert xy raster coordinates to spatial coordinates

Parameters

	xy: sequence of numbers of shape (…, 2)
	Raster coordinages

Returns

	out_xy: np.ndarray
	Spatial coordinates
with shape = np.asarray(xy).shape
with dtype = dtype

	
find_lines(arr, output_offset='middle', merge=True)

	Create a list of line-strings from a mask. Works with connectivity 4 and 8. The input
raster is preprocessed using skimage.morphology.thin. The output linestrings are
postprocessed using shapely.ops.linemerge.

Warning

All standalone pixels contained in arr will be ignored.

Parameters

	arr: np.ndarray of bool of shape (self.shape)
	

	output_offset: ‘middle’ or (nbr, nbr)
	Coordinate offset in meter
if middle: substituted by self.pxvec / 2

Returns

list of shapely.geometry.LineString

Exemple

>>> import buzzard as buzz
>>> import numpy as np
>>> import networkx as nx

>>> with buzz.Env(allow_complex_footprint=1):
... a = np.asarray([
... [0, 1, 1, 1, 0],
... [0, 1, 0, 0, 0],
... [0, 1, 1, 1, 0],
... [0, 1, 0, 0, 0],
... [0, 1, 1, 0, 0],
...
...])
... fp = buzz.Footprint(gt=(0, 1, 0, 0, 0, 1), rsize=(a.shape))
... lines = fp.find_lines(a, (0, 0))
...
... # Display input / output
... print(fp)
... print(a.astype(int))
... for i, l in enumerate(lines, 1):
... print(f'edge-id:{i} of type:{type(l)} and length:{l.length}')
... print(fp.burn_lines(l).astype(int) * i)
...
... # Build a networkx graph
... g = nx.Graph([(l.coords[0], l.coords[-1]) for l in lines])
... print(repr(g.degree))
...
Footprint(tl=(0.000000, 0.000000), scale=(1.000000, 1.000000), angle=0.000000, rsize=(5, 5))
[[0 1 1 1 0]
 [0 1 0 0 0]
 [0 1 1 1 0]
 [0 1 0 0 0]
 [0 1 1 0 0]]
edge-id:1 of type:<class 'shapely.geometry.linestring.LineString'> and length:2.0
[[0 0 0 0 0]
 [0 0 0 0 0]
 [0 1 1 1 0]
 [0 0 0 0 0]
 [0 0 0 0 0]]
edge-id:2 of type:<class 'shapely.geometry.linestring.LineString'> and length:3.0
[[0 0 0 0 0]
 [0 0 0 0 0]
 [0 2 0 0 0]
 [0 2 0 0 0]
 [0 2 2 0 0]]
edge-id:3 of type:<class 'shapely.geometry.linestring.LineString'> and length:4.0
[[0 3 3 3 0]
 [0 3 0 0 0]
 [0 3 0 0 0]
 [0 0 0 0 0]
 [0 0 0 0 0]]
DegreeView({(3.0, 2.0): 1, (1.0, 2.0): 3, (2.0, 4.0): 1, (3.0, 0.0): 1})

	
burn_lines(obj, all_touched=False, labelize=False)

	Creates a 2d image from lines. Uses gdal.Polygonize.

Parameters

	obj: shapely line or nested iterators over shapely lines
	

	labelize: bool
	
	if False: Create a boolean mask

	if True: Create an integer matrix containing lines indices from order in input

Returns

	np.ndarray
	
	of bool or uint8 or int

	of shape (self.shape)

	
find_polygons(mask)

	Creates a list of polygons from a mask. Uses gdal.Polygonize.

Warning

This method is not equivalent to cv2.findContours that considers that pixels are
points and therefore returns the indices of the pixels of the contours of the features.

This method consider that the pixels are areas and therefore returns the coordinates of
the points that surrounds the features.

Warning

Some inputs that may produce invalid polygons (see below) are fixed with the shapely.geometry.Polygon.buffer method.

Shapely will issue several warnings while buzzard fixes the polygons.

>>> # 0 0 0 0 0 0 0
... # 0 1 1 1 0 0 0
... # 0 1 1 1 1 0 0
... # 0 1 1 1 0 1 0 <- This feature has a hole near an edge. GDAL produces a self
... # 0 1 1 1 1 1 1 touching polygon without holes. A polygon with one hole is
... # 0 1 1 1 1 1 1 returned with this method.
... # 0 0 0 0 0 0 0

Parameters

mask: np.ndarray of bool of shape (self.shape)

Returns

list of shapely.geometry.Polygon

	
burn_polygons(obj, all_touched=False, labelize=False)

	Creates a 2d image from polygons. Uses gdal.RasterizeLayer.

Warning

This method is not equivalent to cv2.drawContours that considers that pixels are
points and therefore expect as input the indices of the outer pixels of each feature.

This method consider that the pixels are areas and therefore expect as input the
coordinates of the points surrounding the features.

Parameters

	obj: shapely polygon or nested iterators over shapely polygons
	

	all_touched: bool
	Burn all polygons touched

Returns

	np.ndarray
	of bool or uint8 or int
of shape (self.shape)

Examples

>>> burn_polygons(poly)
>>> burn_polygons([poly, poly])
>>> burn_polygons([poly, poly, [poly, poly], multipoly, poly])

	
tile(size, overlapx=0, overlapy=0, boundary_effect='extend', boundary_effect_locus='br')

	Tile a Footprint to a matrix of Footprint

Parameters

	size: (int, int)
	Tile width and tile height, in pixel

	overlapx: int
	Width of a tile overlapping with each direct horizontal neighbors, in pixel

	overlapy: int
	Height of a tile overlapping with each direct vertical neighbors, in pixel

	boundary_effect: {‘extend’, ‘exclude’, ‘overlap’, ‘shrink’, ‘exception’}
	Behevior at boundary effect locus

	
	‘extend’
	
	Preserve tile size

	Preserve overlapx and overlapy

	Sacrifice global bounds, results in tiles partially outside bounds at locus (if necessary)

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘overlap’
	
	Preserve tile size

	Sacrifice overlapx and overlapy, results in tiles overlapping more at locus (if necessary)

	Preserve global bounds

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘exclude’
	
	Preserve tile size

	Preserve overlapx and overlapy

	Preserve global bounds

	Sacrifice tile count, results in tiles excluded at locus (if necessary)

	Sacrifice boundary pixels coverage at locus (if necessary)

	
	‘shrink’
	
	Sacrifice tile size, results in tiles shrinked at locus (if necessary)

	Preserve overlapx and overlapy

	Preserve global bounds

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘exception’
	
	Raise an exception if tiles at locus do not lie inside the global bounds

	boundary_effect_locus: {‘br’, ‘tr’, ‘tl’, ‘bl’}
	Locus of the boundary effects

	‘br’ : Boundary effect occurs at the bottom right corner of the raster, top left coordinates are preserved

	‘tr’ : Boundary effect occurs at the top right corner of the raster, bottom left coordinates are preserved

	‘tl’ : Boundary effect occurs at the top left corner of the raster, bottom right coordinates are preserved

	‘bl’ : Boundary effect occurs at the bottom left corner of the raster, top right coordinates are preserved

Returns

	np.ndarray
	
	of dtype=object (Footprint)

	of shape (M, N)

	with M the line count

	with N the column count

	
tile_count(rowcount, colcount, overlapx=0, overlapy=0, boundary_effect='extend', boundary_effect_locus='br')

	Tile a Footprint to a matrix of Footprint

Parameters

	rowcount: int
	Tile count per row

	colcount: int
	Tile count per column

	overlapx: int
	Width of a tile overlapping with each direct horizontal neighbors, in pixel

	overlapy: int
	Height of a tile overlapping with each direct vertical neighbors, in pixel

	boundary_effect: {‘extend’, ‘exclude’, ‘overlap’, ‘shrink’, ‘exception’}
	Behevior at boundary effect locus

	
	‘extend’
	
	Preserve tile size

	Preserve overlapx and overlapy

	Sacrifice global bounds, results in tiles partially outside bounds at locus (if necessary)

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘overlap’
	
	Preserve tile size

	Sacrifice overlapx and overlapy, results in tiles overlapping more at locus (if necessary)

	Preserve global bounds

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘exclude’
	
	Preserve tile size

	Preserve overlapx and overlapy

	Preserve global bounds

	Preserve tile count

	Sacrifice boundary pixels coverage at locus (if necessary)

	
	‘shrink’
	
	Sacrifice tile size, results in tiles shrinked at locus (if necessary)

	Preserve overlapx and overlapy

	Preserve global bounds

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘exception’
	
	Raise an exception if tiles at locus do not lie inside the global bounds

	boundary_effect_locus: {‘br’, ‘tr’, ‘tl’, ‘bl’}
	Locus of the boundary effects

	‘br’ : Boundary effect occurs at the bottom right corner of the raster, top left coordinates are preserved

	‘tr’ : Boundary effect occurs at the top right corner of the raster, bottom left coordinates are preserved

	
tile_occurrence(size, pixel_occurrencex, pixel_occurrencey, boundary_effect='extend', boundary_effect_locus='br')

	Tile a Footprint to a matrix of Footprint
Each pixel occur pixel_occurrencex * pixel_occurrencey times overall in the output

Parameters

	size: (int, int)
	Tile width and tile height, in pixel

	pixel_occurrencex: int
	Number of occurence of each pixel in a line of tile

	pixel_occurrencey: int
	Number of occurence of each pixel in a column of tile

	boundary_effect: {‘extend’, ‘exclude’, ‘overlap’, ‘shrink’, ‘exception’}
	Behevior at boundary effect locus

	
	‘extend’
	
	Preserve tile size

	Preserve overlapx and overlapy

	Sacrifice global bounds, results in tiles partially outside bounds at locus (if necessary)

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘overlap’
	
	Preserve tile size

	Sacrifice overlapx and overlapy results in tiles overlapping more at locus (if necessary)

	Preserve global bounds

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘exclude’
	
	Preserve tile size

	Preserve overlapx and overlapy

	Preserve global bounds

	Sacrifice tile count, results in tiles excluded at locus (if necessary)

	Sacrifice boundary pixels coverage at locus (if necessary)

	
	‘shrink’
	
	Sacrifice tile size, results in tiles shrinked at locus (if necessary)

	Preserve overlapx and overlapy

	Preserve global bounds

	Preserve tile count

	Preserve boundary pixels coverage

	
	‘exception’
	Raise an exception if tiles at locus do not lie inside the global bounds

	boundary_effect_locus: {‘br’, ‘tr’, ‘tl’, ‘bl’}
	Locus of the boundary effects

	‘br’ : Boundary effect occurs at the bottom right corner of the raster top left coordinates are preserved

	‘tr’ : Boundary effect occurs at the top right corner of the raster, bottom left coordinates are preserved

	‘tl’ : Boundary effect occurs at the top left corner of the raster, bottom right coordinates are preserved

	‘bl’ : Boundary effect occurs at the bottom left corner of the raster, top right coordinates are preserved

Returns

	np.ndarray
	
	of dtype=object (Footpr

int)
- of shape (M, N)

	with M the line count

	with N the column count

	
__str__()

	Return str(self).

	
__repr__()

	Return repr(self).

	
__reduce__()

	Helper for pickle.

	
__hash__()

	Return hash(self).

	
forward_conv2d(kernel_size, stride=1, padding=0, dilation=1)

	Shift, scale and dilate the Footprint as if it went throught a 2d convolution kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly
follow the same arithmetic.

This function is a many to one mapping, two footprints with different rsizes can produce
the same Footprint when stride > 1.

Parameters

	kernel_size: int or (int, int)
	See torch.nn.Conv2d documentation.

	stride: int or (int, int)
	See torch.nn.Conv2d documentation.

	padding: int or (int, int)
	See torch.nn.Conv2d documentation.

	dilation: int or (int, int)
	See torch.nn.Conv2d documentation.

Returns

Footprint

Example

>>> fp0 = buzz.Footprint(tl=(0, 0), size=(1024, 1024), rsize=(1024, 1024))
... fp1 = fp0.forward_conv2d(kernel_size=2, stride=2)
... print(fp1)
Footprint(tl=(0.5, -0.5), size=(1024, 1024), rsize=(512, 512))

	
backward_conv2d(kernel_size, stride=1, padding=0, dilation=1)

	Shift, scale and dilate the Footprint as if it went backward throught a 2d convolution
kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly
follow the same arithmetic.

This function is a one to one mapping, two different input footprints will produce two
different output Footprints. It means that the backward_conv2d of a forward_conv2d may
not reproduce the initial Footprint, some pixels on the bottom and right edges may be
missing.

Parameters

	kernel_size: int or (int, int)
	See torch.nn.Conv2d documentation.

	stride: int or (int, int)
	See torch.nn.Conv2d documentation.

	padding: int or (int, int)
	See torch.nn.Conv2d documentation.

	dilation: int or (int, int)
	See torch.nn.Conv2d documentation.

Returns

Footprint

Example

>>> fp1 = buzz.Footprint(tl=(0.5, -0.5), size=(1024, 1024), rsize=(512, 512))
... fp0 = fp1.backward_conv2d(kernel_size=2, stride=2)
... print(fp0)
Footprint(tl=(0, 0), size=(1024, 1024), rsize=(1024, 1024))

	
forward_convtranspose2d(kernel_size, stride=1, padding=0, dilation=1, output_padding=0)

	Shift, scale and dilate the Footprint as if it went throught a 2d transposed convolution
kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly
follow the same arithmetic.

A 2d transposed convolution has 4 internal steps:
1. Apply stride (i.e. interleave the input pixels with zeroes)
2. Add padding
3. Apply a 2d convolution with stride=1 and pad=0
4. Add output-padding

This function is a one to one mapping, two different input footprints will produce two
different output Footprints.

Parameters

	kernel_size: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	stride: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	padding: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	dilation: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	output_padding: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

Returns

Footprint

Example

>>> fp0 = buzz.Footprint(tl=(0, 0), size=(1024, 1024), rsize=(512, 512))
... fp1 = fp0.forward_convtranspose2d(kernel_size=3, stride=2, padding=1)
... print(fp1)
Footprint(tl=(0, 0), size=(1023, 1023), rsize=(1023, 1023))

	
backward_convtranspose2d(kernel_size, stride=1, padding=0, dilation=1, output_padding=0)

	Shift, scale and dilate the Footprint as if it went backward throught a 2d transposed
convolution kernel.

The arithmetic followed is the one from pytorch, but other deep-learning libraries mostly
follow the same arithmetic.

A 2d transposed convolution has 4 internal steps:
1. Apply stride (interleave the input pixels with zeroes)
2. Add padding
3. Apply a 2d convolution stride:1, pad:0
4. Add output-padding

This function is a one to one mapping, two different input Footprints will produce two
different output Footprints.

Parameters

	kernel_size: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	stride: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	padding: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	dilation: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

	output_padding: int or (int, int)
	See torch.nn.ConvTranspose2d documentation.

Returns

Footprint

Example

>>> fp0 = buzz.Footprint(tl=(0, 0), size=(1023, 1023), rsize=(1023, 1023))
... fp1 = fp0.backward_convtranspose2d(kernel_size=3, stride=2, padding=1)
... print(fp1)
Footprint(tl=(0, 0), size=(1024, 1024), rsize=(512, 512))

Env

	
class buzzard.Env(**kwargs)

	Context manager to update buzzard’s states. Can also be used as a decorator.

Parameters

	significant: int
	Number of significant digits for floating point comparisons
Initialized to 9.0
see: https://github.com/earthcube-lab/buzzard/wiki/Precision-system
see: https://github.com/earthcube-lab/buzzard/wiki/Floating-Point-Considerations

	default_index_dtype: convertible to np.dtype
	Default numpy return dtype for array indices.
Initialized to np.int32 (signed to allow negative indices by default)

	allow_complex_footprint: bool
	Whether to allow non north-up / west-left Footprints
Initialized to False

Examples

>>> import buzzard as buzz
>>> with buzz.Env(default_index_dtype='uint64'):
... ds = buzz.Dataset()
... dsm = ds.aopen_raster('dsm', 'path/to/dsm.tif')
... x, y = dsm.meshgrid_raster
... print(x.dtype)
numpy.uint64

>>> @buzz.Env(allow_complex_footprint=True)
... def main():
... fp = buzz.Footprint(rsize=(10, 10), gt=(100, 1, 0, 100, 0, 1))

	
__enter__()

	

	
__exit__(exc_type=None, exc_val=None, exc_tb=None)

	

	
__call__(fn)

	Call self as a function.

	
buzzard.env = <buzzard._env._CurrentEnv object>

	Namespace to access current values of buzzard’s environment variable (see buzz.Env)

Example

>>> buzz.env.significant
8.0

Misc.

	
buzzard.open_raster(*args, **kwargs)

	Shortcut for Dataset().aopen_raster

>>> help(Dataset.open_raster)

See Also

	Dataset.open_raster()

	Dataset.aopen_raster()

	
buzzard.create_raster(*args, **kwargs)

	Shortcut for Dataset().acreate_raster

>>> help(Dataset.create_raster)

See Also

	Dataset.create_raster()

	Dataset.acreate_raster()

	
buzzard.wrap_numpy_raster(*args, **kwargs)

	Shortcut for Dataset().awrap_numpy_raster

>>> help(Dataset.wrap_numpy_raster)

See Also

	Dataset.wrap_numpy_raster()

	Dataset.awrap_numpy_raster()

	
buzzard.open_vector(*args, **kwargs)

	Shortcut for Dataset().aopen_vector

>>> help(Dataset.open_vector)

See Also

	Dataset.open_vector()

	Dataset.aopen_vector()

	
buzzard.create_vector(*args, **kwargs)

	Shortcut for Dataset().acreate_vector

>>> help(Dataset.create_vector)

See Also

	Dataset.create_vector()

	Dataset.acreate_vector()

	
buzzard.utils.concat_arrays(fp, array_per_fp, _)

	Concatenate arrays from array_per_fp to form fp.

This function is meant to be fed to the merge_arrays parameter when constructing a recipe.

Caveats, FAQs and design choices

Buzzard has a lot of ambition but is still a young library with several caveats. Are you currently trying to determine if buzzard is the right choice for your project? We got you covered and listed here the use-cases that are currently poorly supported. The rest is a bliss!

Caveat List

Installation

→ buzzard installation is complex because of the GDAL and rtree dependencies.

→ The anaconda package does not exist

Rasters

→ Reading a raster file is currently internally performed by calls to GDAL drivers, and it might be too slow under certain circumstances. Tweaking the GDAL_CACHEMAX variable may improve performances.

→ On-the-fly reprojections is an ambitious feature of buzzard, but this feature only reaches its full potential with vectorial data. On-the-fly raster reprojections are currently partially supported. Those only work if the reprojection preserve angles, if not an exception is raised.

Floating point precision losses

→ The biggest plague of a GIS library is the floating point precision losses. On one hand those losses cannot be avoided (such as in a reprojection operation), and on the other hand certain operations can only be performed with noise-free numbers (such as the floor or ceil operations). The only solution is to round those numbers before critical operations. buzzard has its own way of dealing with this problem: it introduces a global variable to define the number of significant digits that should be considered as noise-less (9 by default).

This way buzzard tries to catch the errors early and raise exceptions. But despite all those efforts some bugs still occur when the noise reaches the significant digits, resulting in strange exceptions being raise.

However those bugs only occur when manipulating very small pixels along with very large coordinates, which is not usual (the ratio coordinate/pixel-size should not exceede 10 ** env.significant).

The Footprint class

→ The Footprint class is long to instanciate (~0.5ms), several use cases involving masses of Footprints are impractical because of this.

→ The Footprint class is the key feature of buzzard, but its specifications are broader that its unit tests: the non-north-up rasters are not fully unit tested. To instanciate such a Footprint the buzz.env.allow_complex_footprint should be set to True. However those Footprints should work fine in general

→ The Footprint class lack some higher lever constructors to make several common construction schemes easier. However by using the intersection method of a Footprint on itself and tweaking the 3 optional parameters covers most of the missing use-cases.

The async rasters

→ Most of the async rasters as advertised in the doc or the examples are not yet implemented. Only the cached raster recipes are.

→ Using cached raster recipes has a side effect on a file system. Using a single cache directory from two different programs at the same time is an undefined behavior. Although it works fine when the cache files are already instantiated.

→ The scheduler that was written to support the async rasters is not proven to be bug free. Although it is filled with assertions that will most likely catch any remaining bug.

FAQs and design choices

The following list contains the FAQs or features that are often mistaken as bugs ;)

→ Why buzzard instead of fiona or rasterio that are much more mature and straightforward libraries?

The answer is simple: as soon as you are working with large images, or with geometries alongside images, you can benefit from the higher level abstractions that buzzard provides.

→ Why can’t I simply reproject shapely geometries using buzzard?

Because buzzard does not aim to replace pyproj. When using the classic stack, each of osgeo’s lib has its own wrapper:

	GEOS -> shapely

	OGR -> fiona

	GDAL -> rio

	OSR -> pyproj

Buzzard is transversal, it wraps enough OGR, GDAL and OSR so that you don’t have import those most of the time. Some known exceptions are:

	Raster reprojection that does not preserve angles

	Shapely objects reprojection

	Contour lines generation

It might be the case that someday buzzard provides a transversal feature that replaces pyproj but nothing is planned.

→ In buzzard, all sources (such as raster and vector files) are tied to a Dataset object. This is design choice has several advantages now and even more advantages in the long term. See the Dataset’s docstring.

→ buzzard is a binding for GDAL, but all the features that allows editing the attributes of an opened file are not exposed in buzzard. The wish here is to make buzzard as functional [https://en.wikipedia.org/wiki/Functional_programming] as possible.

→ The with Dataset.close as ds: syntax is chosen over the with Dataset as ds: syntax in order to stay consistent with the with Source.close as src: syntax, that itself exist because of the need for disambiguation with this other feature: with Source.delete as src:.

→ The Footprint class is an immutable [https://en.wikipedia.org/wiki/Immutable_object] object. This is not a bug.

→ Why is the Footprint class not directly implementing a shapely Polygon?

In the early versions of buzzard, it was the case. But method name conflicts became a big problem. And overall, it was not that useful. You can still use Footprint.poly to convert a Footprint to a shapely Polygon.

→ Why support non-north-up Footprints?

It was harder to design but cleaner in the end. Now that it is (mostly - missing unit tests at the moment) supported there is a hope that it creates new use cases.

→ Why are the get_data and set_data methods of a raster so complex?

Those methods accept any Footprint as a parameter, it includes Footprints that don’t share alignment/scale/rotation/bounds with the raster source. It allows the user to forget about the file when designing a piece of code. The downside of this feature is that the user is not aware when a resource consuming resampling is performed. To avoid this problem, the Dataset class is by default configured to raise an error when an interpolation occurs.

→ If you ever wander in the buzzard source code you may notice that the Dataset class holds pointers to Source objects and vice versa (through dependency injection). This recursive dependency reveal the design choice of making the Dataset and the Source classes a single class. The Source objects should be seen as extensions of a Dataset object.

→ If you ever wander in the buzzard source code you will notice a complex separation of concern scheme in which a class is split between a facade and a back class.

This separation exists in order to allow garbage collection to be made, even if the Dataset instantiates a scheduler on a separate thread. The facade classes are manipulated by the user and have pointers towards the back classes, and the later have no references to the facade, while the scheduler only have pointers to the back classes. This way, when the facade are collected, the back are collected too. This separation also allows us to perform parameter checking only once in the facade classes, and then call the appropriate back implementation using dynamic dispatch [https://en.wikipedia.org/wiki/Dynamic_dispatch].

Index

 _
 | A
 | C
 | D
 | E
 | I
 | K
 | M
 | O
 | P
 | V
 | W

_

 	
 	__contains__() (buzzard.Dataset method)

 	(buzzard.PoolsContainer method)

 	__del__() (buzzard.Dataset method)

 	__getitem__() (buzzard.Dataset method)

 	(buzzard.PoolsContainer method)

 	
 	__iter__() (buzzard.PoolsContainer method)

 	__len__() (buzzard.Dataset method)

 	(buzzard.PoolsContainer method)

A

 	
 	acreate_cached_raster_recipe() (buzzard.Dataset method)

 	acreate_raster() (buzzard.Dataset method)

 	acreate_vector() (buzzard.Dataset method)

 	activate_all() (buzzard.Dataset method)

 	
 	active_count() (buzzard.Dataset property)

 	alias() (buzzard.PoolsContainer method)

 	aopen_raster() (buzzard.Dataset method)

 	aopen_vector() (buzzard.Dataset method)

 	awrap_numpy_raster() (buzzard.Dataset method)

C

 	
 	close() (buzzard.Dataset property)

 	concat_arrays() (in module buzzard.utils)

 	create_cached_raster_recipe() (buzzard.Dataset method)

 	create_raster() (buzzard.Dataset method)

 	(in module buzzard)

 	
 	create_raster_recipe() (buzzard.Dataset method)

 	create_vector() (buzzard.Dataset method)

 	(in module buzzard)

D

 	
 	Dataset (class in buzzard)

 	
 	deactivate_all() (buzzard.Dataset method)

E

 	
 	env (in module buzzard)

I

 	
 	items() (buzzard.Dataset method)

K

 	
 	keys() (buzzard.Dataset method)

M

 	
 	manage() (buzzard.PoolsContainer method)

O

 	
 	open_raster() (buzzard.Dataset method)

 	(in module buzzard)

 	
 	open_vector() (buzzard.Dataset method)

 	(in module buzzard)

P

 	
 	pools() (buzzard.Dataset property)

 	
 	PoolsContainer (class in buzzard)

 	proj4() (buzzard.Dataset property)

V

 	
 	values() (buzzard.Dataset method)

W

 	
 	wkt() (buzzard.Dataset property)

 	
 	wrap_numpy_raster() (buzzard.Dataset method)

 	(in module buzzard)

 _images/9c90d22ceb41a55f128334f8a233ab2be242bf48.png
All the boxes are public classes, called "Facade”
“They also have a "Back” class associated thal
private and can be accessed using the *_back”

attrbute from the “Facad

Abstract Classes.

‘Abstract Raster Classes

‘Abstract Vector Classes

AProxyVector

Base class of all
vectors, defines a
geometry type, ields,
and the abilty to read
geometries

APy

AProxyRaster

Base class of all
proxies, defines spatial
Teference owning

AStoreaVector

N

Base class of all
rasters, defines a
location in space, a
raster size and a data
type, and the abilty to

Base class of all

Astored

Base class of all proxies
that can be writen,
defines an opening
mode (1)

A

AAsyncRaster

ARasterRecipe

Base class for all
rasters that are
managed by
DataSource's scheduler

Base class for all rasters
that are computed on the
fly

AGDALVector
vectors that can be
Base class of GDAL writen, defines the
vectors abitiy o insert
geometres.
AEmissaryVector

‘GDAL vector using th
“Memory'driver

AEmissary

read arrays.
Raster wrapping a Raster wrapping a J
numpy array numpy array, managed
by DataSource's
scheduler
AStoredRaster (N1 in buzzard
0.5.001)
Base clas of a rasters Raster computed on the. Raster computed on the
it can be written, n ly but that caches resuits
AGDALRaster . y
defines the abilty to (NY1in buzzard 0.5.001) on disk
modify arrays Base class of GDAL
rasters
AEmissaryRaster

Base class of vectors
that use a driver

Base class of all proxies
that are accessed using
adiver (e.g. GDAL

Base class of rasters
that use a driver

GDAL raster using the
“MEM Ditver

GDAL vector using a
flle driver

APooledEmissaryVector

“GeoTin)
A

APooledEmissary

Base class of openable
vectors

Base class of proxies
using a driver that can
be opened multple
times (e.g. e
descriptor)

APooledEmissaryRaster

Base class of openable

rasters

| GDALFieRaser | (GDAL raster using a fle

GDAL raster using a file
drver

drver, managed by
DataSource's scheduler
(NY1in buzzard 0.5.001)

_images/buzzard.png

nav.xhtml

 Table of Contents

 		
 Welcome to buzzard’s documentation!

 		
 API

 		
 Dataset

 		
 Dataset

 		
 Pool Container

 		
 Source Constructors

 		
 Sources

 		
 GDALFileRaster

 		
 GDALMemRaster

 		
 NumpyRaster

 		
 CachedRasterRecipe

 		
 GDALFileVector

 		
 GDALMemoryVector

 		
 Footprint

 		
 Env

 		
 Misc.

 		
 Caveats, FAQs and design choices

 		
 Caveat List

 		
 Installation

 		
 Rasters

 		
 Floating point precision losses

 		
 The Footprint class

 		
 The async rasters

 		
 FAQs and design choices

_static/file.png

_static/minus.png

_static/plus.png

